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The purpose of the density matrix formalism

So far in the lecture, we represented the state of a quantum
mechanical system with its state vector. Nevertheless, it can be useful
to represent it in a different way, such that:

we can treat conveniently the case where the state of the system is
only partially known

we can describe subsystems of a composite quantum mechanical
system

this formalism is equivalent to the state vector/wave function
formalism. In particular, it is compatible with the postulates of
quantum mechanics

⇒ Density matrix formalism
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Definition of the density matrix

Consider a quantum system which is in a state |Ψi 〉 ∈ H with
probability pi . Let’s have a look at the expectation value of an
arbitrary observable Â:〈

Â
〉

=
∑
i

pi 〈Ψi | Â |Ψi 〉 .

Using a complete orthonormal basis {ϕi}, we can write

〈
Â
〉

=
∑
n,m

〈ϕn| Â |ϕm〉 〈ϕm|

(∑
i

pi |Ψi 〉 〈Ψi |

)
|ϕn〉 .

We can therefore define the density matrix or density operator

ρ̂ =
∑
i

pi |Ψi 〉 〈Ψi | =⇒
〈
Â
〉

= Tr(ρ̂Â).
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Pure states and mixed states

We distinguish between two different types of states. A pure state can
be written as ρ̂ = |Ψ〉 〈Ψ|, whereas a mixed state is expressed as

ρ̂ =
∑
i

pi |Ψi 〉 〈Ψi | , pi < 1.

A mixed state is therefore a statistical ensemble of pure states. As a
simple example, consider an ensemble of spins that can be in the states
{ |↑〉 , |↓〉 }. A pure state can be expressed as ρ̂p = |↑〉 〈↑|, a mixed
state is for instance ρ̂m = (|↑〉 〈↑|+ |↓〉 〈↓|)/2. Explicitly, the density
matrices are

ρ̂p =

[
1 0
0 0

]
, ρ̂m =

[
1/2 0

0 1/2

]
.

It is easy to verify that ρ̂p has eigenvalues 0 and 1, whereas ρ̂m has
eigenvalues 1/2 and 1/2. Furthermore, we have Tr(ρ̂p) = Tr(ρ̂m) = 1
but Tr(ρ̂2p) = 1, Tr(ρ̂2m) = 1/2.
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A further example of a density matrix with basis
change

Consider two states in the basis { |0〉 , |1〉 }. We now change the basis
and go to: |±〉 = (|0〉 ± |1〉)/

√
2. We can define in the new basis the

following state: ρ̂p = |+〉 〈+|, which can be explicitly written in the
basis { |+〉 , |−〉 }

ρ̂p =

[
1 0
0 0

]
.

In the { |0〉 , |1〉 } basis, the density operators can be explicitly written
as

|+〉 〈+| =
1

2
(|0〉+ |1〉)(〈0|+ 〈1|) =

1

2
(|0〉 〈0|+ |1〉 〈0|+ |0〉 〈1|+ |1〉 〈1|)

⇒ ρ̂p =

[
1/2 1/2
1/2 1/2

]
.
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Measurements on a quantum system

In quantum mechanics, measurements are performed through
measurement operators Mm. For a system in the initial state |Ψi 〉, the
probability to get an outcome m is

p(m|i) = 〈Ψi |M†
mMm |Ψi 〉 = Tr(M†

mMm |Ψi 〉 〈Ψi |).

Therefore, the probability to get an outcome m after the measurement
is

p(m) =
∑
i

pi 〈Ψi |M†
mMm |Ψi 〉 = Tr(M†

mMmρ̂)

and the state after measuring m becomes

|Ψm
i 〉 =

Mm |Ψi 〉√
〈Ψi |M†

mMm |Ψi 〉
⇒ ρ̂m =

Mmρ̂M
†
m

Tr(M†
mMmρ̂)

.
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Example of a measurement operator

As an example, consider the operator M1 = |1〉 〈1| for the density
matrix ρ̂ = a |0〉 〈0|+ b |1〉 〈1|. The probability to measure the state |1〉
is

p(1) = Tr(M†
1M1ρ̂) = Tr(|1〉 〈1| |1〉︸ ︷︷ ︸

I

〈1| (p0 |0〉 〈0|+ p1 |1〉 〈1|)).

⇒ p(1) = Tr(|1〉 〈1| p1) = p1.
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Some properties of the density matrix

Using the definition of the density matrix, it is easy to show the
following properties:

Tr(ρ̂) = 1

ρ̂ is positive definite

ρ̂ = ρ̂†

Tr(ρ̂2) ≤ 1

The time evolution of the density matrix is obtained by applying the
Schroedinger equation to the definition of ρ̂. One obtains the
Liouville-von Neumann equation:

i~
d

dt
ρ̂ =

[
Ĥ, ρ̂

]
.
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Reduced density matrix

Suppose we have systems A and B described by the density matrix
ρ̂AB . Then, we can obtain the reduced density matrix by taking the
partial trace of ρ̂AB , e.g.

ρ̂A = TrB(ρ̂AB),

where we extracted the information about system A. The partial trace
operation is defined as

TrB(|a1〉 〈a2| ⊗ |b1〉 〈b2|) = |a1〉 〈a2|Tr(|b1〉 〈b2|).

Example: consider two-level system in excited state (e.g. an atom).
We have the systems: A: atomic state, B: photon-field state. Given we
have no knowledge about the photon state, we get the density matrix
of the atom by taking the partial trace over B of the density matrix of
the full system.
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The postulates of Quantum Mechanics in the
Density Matrix formalism

We find that the four following postulates are compatible with the ones
given in lecture:

1 States: The states of a physical system are represented as density
operators acting on a Hilbert space H.

2 Evolution: The Liouville-von Neumann equation governs the
dynamics of the quantum system.

3 Measurement: Measurements on a quantum system are represented
by measurement operators, acting on the state space of the system
being measured.

4 Composition: The states of a composite quantum system with state
spaces HA and HB are represented as density operators on HA ⊗HB
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QUANTUM STATE TOMOGRAPHY 



Quantum state Tomography 

• Classical tomography 

• QM tomography 

• Tools: Stokes Parameters 

• Different Approaches for tomography: 

    - Quantum tomography 

    - Maximum likelihood estimation (MLE) 

    - Applications: 

    - Quantum process tomography 

• Examples of physical implementation 

• Conclusion 

 



Classical Tomography 

• Tomography: Derived from 

Ancient Greeks, τόμος 

γράφω tomos, "slice, section" 

and graphō, "to write“ 

 

• By collecting many 2D sectional 

images reconstruct the 

appearance of the object. 

 

• Classical system: robust against 

measurements. 
Fig.2 Optical coherence 

reconstruction of a fingertip [2] 

Fig.1 Basic principle of 

tomography – projected plane 

image of the original object [1] 



What is Quantum tomography?  

• QM tomography is a process which reconstructs the state of an 

unknown quantum source by repeated measurements. 

• 3rd QM postulate: Collapse Rule  Must prepare many copies of the 

same state for repeated measurements. 

• Perfect identified state is said to form “quorum” 

• In real experiment, measurements are non-ideal. 

• Always subject to noise. 

 

Fig.3 Reconstruction of density 

matrix [3] 



Tools : Stokes parameters 

Stokes (S) parameter are defined by: 

𝜎𝑖: Pauli matrices 

Density matrix for single qubit relate 

to Stokes parameter by: 

Fig.4 The Bloch Poincaré sphere, equivalent to 

a rotated Bloch sphere for a qubit [4] 

|𝐻 = |0 , |𝑉 = |1  



Example of photon case : Single Qubit tomography 

Stokes parameter fully characterize the polarization of the light [4] 

 

Eg. Consider an input state |𝐻  = |0   
 



Generalisation to n-qubits 

- Generalization to n-qubit is straight-forward, the density matrix of a 

n-qubit state can be written as: 

 

 

 now, one would have 4𝑛 - 1 real parameters (due to normalization). 

Eg. For n =2, 4 parameters for  

 



Photon polarization experiment 

• Black box consists of a non-

linear crystal for parametric 

down conversion, producing 

photon pairs of qubits in an 

arbitrary state of polarization. 

 

•  Three optical elements: 

 a polarizer (which only allows 

vertical light), quarter-wave plate 

and a half-wave plate.  

 

• The angles of both axes in QWP 

and HWP on both arms provide 

4 degrees of freedom 

(q1,q2,h1,h2), i.e. a 2 qubit 

state. 

 



Photon polarization experiment 

Measurement 

table of 16 

measurements, in 

different basis. 

Coincident count for 2 

qubits. 

E.g. Measure 𝑆2 by projecting onto |𝑅   
and |𝐿   



Graphical representation of QM tomography result 

Fig.6 Graphical 

representation of the 

density matrix obtained by 

linear tomography and 

maximum likelihood 

technique. 

 

This figure represents a 

bell-state. 



Quantum tomography 

• Using ideal quantum tomography, If a measurement 
𝑃 =  {𝐸 1 . . . 𝐸 𝑁} is performed on a system in state 𝜌, 
then the probability of observing 𝐸 𝑖 is 𝑝𝑖 =  𝑇𝑟(𝐸 𝑖𝜌)[5] 

• No measurement can reveal the true probability of 
each event, but the frequencies of occurrence by 
performing repeated measurements 

• In the ideal case, gather enough statistics 𝑁 → ∞  
form a quorum.  

 

 

• Subject to noise  Negative eigenvalues (Physical 
system must be a positive definite matrix!), same 
problem exist in MLE.  

• Problems get worse for larger Hilbert space Fig.4  A cross section of the Bloch cube, green dots  

represent positive physical states of 144 𝜌𝑡𝑜𝑚𝑜, red spots are 

unphysical, N = 11 measurements. 

 



Example – extreme case  

If Alice only perform measurement of 

along each polarization basis, i.e. 

alternating between horizontal |𝐻 , 
right circular |𝑅  and diagonal |𝐷  
polarization, and imagine she obtained: 

• This demonstrates that tomography only matches the 

observed frequency of each measurement outcome, and 

pays no respect to positivity, physical state. 

Problem gets worse in 

larger Hilbert Space!, 

probability of at least 

one negative 

eigenvalue scales with 

dimension d ! 

More qubits ? 

Negative eigenvalue ! 

(unphysical) 
Eigenvalue: 

Expectation of 

the outcome: 



Discussion 

• Up to now, the tools developed so far implicity allow infinitely set of 

ideal data set. When applying this linear tomography technique, the 

probabilities obtained in real experiment can be contradictory and 

even physically impossible  necessary to adopt a new approach to 

return a legitimate density matrix ! 

 

• Which can include experimental errors, and deal with the unphysical 

negative eigenvalues. 



Maximum likelihood Estimation Algorithm [6] 

(i) Generate a density matrix that must be positive, Hermitian to be 

physical 

(ii) Introduce  a likelihood function which quantifies how “good” the 

density matrix fits the data  

(iii) Optimize the likelihood function with standard numerical technique, 

e.g. Monte Carlo method. 



Example of MLE 

𝑤ℎ𝑒𝑟𝑒,𝑀𝑘  is the 

𝑘 𝑡ℎ measurement operator, 

𝑚𝑘 is the measurement 

outcome. 

In general, the measurement outcome follows a 

Gaussian distribution in large N [3] 

𝜎𝑘: standard deviation suppressed as 1/√𝑁. 

A convenient choice of 𝑇  tridiagonal matrix, 

would allow the “guess” density matrix to 

be invertible. 

Finding the minimum of the log-likelihood 

function  



Maximum likelihood Estimation (MLE) Discussion 

Statistical approach [4,5]: 

• Best “Fit” of the density matrix as a 
parameters to maximize the probabilities 
of observing the measured outcomes.  

• i.e. Maximizing the likelihood function, 
where 𝑀𝑖 = measurement operator of 
𝑖 𝑡ℎ observation, and 𝑀𝑖 be the set of 
measurement frequency record. 

 

 

• Suffer from zero eigenvalue (inherited 
from quantum tomography) i.e. rank 
deficient. 

 
Fig.5 An example of likelihood 

function with constrained maximum x, 

z axis: 𝜎𝑥 , 𝜎𝑧 . [5] 



Application: Quantum Process tomography 

Quantum state tomography can be very useful,  

• identifying an unknown quantum source 

• verifying the fidelity of a known prepared state 

• It can also be used to identify the quantum operation 

of a system. 

 

Unknown quantum 

operation 



Appendix  

Can also define a more general S-like 

parameter to perform non-orthogonal basis 

measurement: 

S parameters and T parameters are related by a linear 

transformation 

where 

Non-orthogonal projective measurements: 



Bayesian Mean Estimation (BME) 

• Best estimate is an average over all states ρ consistent with the data, 

wighted by their likelihood. (Full rank) 

• Consider all possibilities. MLE identifies the best fit to observed data, 

nevertheless, many nearby states are equally likely, and should be 

included as alternatives. 

• Demand error bars, sensible choice of error bars around region of 

plausible states.  

• Optimize accuracy with different metrics, such as fidelity, relative 

entropy will favour different estimation procedures. 

 

 

 



Bayesian Mean Estimation algorithm 

 Use the measured data to generate a likelihood function                        

which quantifies the relative plausibility of different state assignments. 

 Choose a prior distribution over states               (represent the 

estimator’s ignorance), in general “Uniform”. 

 Multiply prior by likelihood, to obtain a posterior distribution. 

 

which represents the estimator’s knowledge. 

 Report the mean of this posterior 



Linear inversion 

Born ‘s rule states 𝑃 𝐸𝑖 𝜌 = 𝑇𝑟 𝐸𝑖 𝜌 , 𝐸𝑖  being any measurement 

operator. 

one can write density matrix e.g. 4x4 as a 16 element column vectors, 

with S,T being linear operators 

Problem amounts to inverting 

this matrix  
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