Single qubit control.

Coherent Control and Measurement

- qubit state represented on a Bloch sphere
- vary length, amplitude and phase of microwave pulse to control qubit state

Qubit control

- apply microwave signal through resonator input
- or through side-gate

time-dependent Hamiltonian for state manipulation

$$\hat{H} = \frac{1}{2}\hbar\omega_a\hat{\sigma}_z + \hbar\Omega_R\cos(\omega_b t + \phi_R)\hat{\sigma}_x$$

Qubit with dipole coupled electric field

Rotating frame

Dispersive readout in circuit QED.

Qubit Read Out

desired: good on/off ratio no relaxation in on state (QND)

Dressed States Energy Level Diagram

$$H = \hbar\omega_r \left(a^{\dagger} a + \frac{1}{2} \right) + \frac{\hbar\omega_a}{2} \sigma^z + \hbar g (a^{\dagger} \sigma^- + a \sigma^+)$$

in resonance:

$$\omega_a - \omega_r = \Delta = 0$$

strong coupling limit:

$$g = \frac{dE_0}{\hbar} > \gamma, \, \kappa$$

Jaynes-Cummings Ladder

Atomic cavity quantum electrodynamics reviews:

J. Ye., H. J. Kimble, H. Katori, *Science* **320**, 1734 (2008)

S. Haroche & J. Raimond, Exploring the Quantum, OUP Oxford (2006)

Non-Resonant (Dispersive) Interaction

approximate diagonalization: $|\Delta| = |\omega_a - \omega_r| \gg g$:

$$H \approx \hbar \left(\omega_r + \frac{g^2}{\Delta}\sigma_z\right) a^{\dagger}a + \frac{\hbar}{2} \left(\omega_a + \frac{g^2}{\Delta}\right) \sigma_z$$

cavity frequency shift and qubit ac-Stark shift

Lamb Shift

from resonator

Circuit QED - read out of qubit state

transmission measurement to determine qubit state:

Phase sensitive measurement of transmitted microwave:

Voltage signal:

$$A(t)\sin(\omega_m t + \phi(t)) \equiv I(t)\sin(\omega_m t) + Q(t)\cos(\omega_m t)$$

Circuit QED - read out of qubit state

transmission measurement to determine qubit state:

dispersive Hamiltonian:

$$H = \hbar(\omega_r + \chi \sigma_z) a^{\dagger} a + \frac{\hbar}{2} (\omega_a + \chi) \sigma_z$$

state-dependent frequency shift $\rightarrow \sigma_z$ determined

Qubit Control and Readout

Time dependent measurements

- excite qubit at t<o
- measure transmitted field quadratures (I, Q) with microwave drive at resonance $(\omega_m = \omega_r \chi)$
- qubit in ground state: full resonator transmission (rise time given by κ)
- qubit in excited state: only partial transmission until qubit decays to ground state

Population reconstruction

Area between curves is proportional to qubit state population: [Bianchetti et al., Phys. Rev. A 80, 043840 (2009)]

Time [µs]

typical pulse length for π -pulse: 10ns

3 measurements for 3 coefficients r_x , r_y , r_z of

$$\rho = \frac{1}{2}(id + r_x\sigma_x + r_y\sigma_z + r_z\sigma_z)$$

3 measurements for 3 coefficients r_x , r_y , r_z of

$$\rho = \frac{1}{2}(\mathrm{id} + r_x\sigma_x + r_y\sigma_z + r_z\sigma_z)$$

Measurement along z-axis: $r_z = \langle \sigma_z \rangle = \text{Tr}[\rho \sigma_z]$

3 measurements for 3 coefficients r_x , r_y , r_z of

$$\rho = \frac{1}{2}(\mathrm{id} + r_x\sigma_x + r_y\sigma_z + r_z\sigma_z)$$

Measurement along z-axis: $r_z = \langle \sigma_z \rangle = \text{Tr}[\rho \sigma_z]$

Rotation + measurement: $r_x = \langle \sigma_x \rangle = \text{Tr}[\left(\frac{\pi}{2}\right)_y \rho\left(\frac{\pi}{2}\right)_{-y} \sigma_z]$

3 measurements for 3 coefficients r_x , r_y , r_z of

$$\rho = \frac{1}{2}(\mathrm{id} + r_x\sigma_x + r_y\sigma_z + r_z\sigma_z)$$

Measurement along z-axis: $r_z = \langle \sigma_z \rangle = \text{Tr}[\rho \sigma_z]$

Rotation + measurement: $r_x = \langle \sigma_x \rangle = \text{Tr}[\left(\frac{\pi}{2}\right)_y \rho\left(\frac{\pi}{2}\right)_{-y} \sigma_z]$

Rotation + measurement: $r_y = \langle \sigma_y \rangle = \text{Tr}[\left(\frac{\pi}{2}\right)_x \rho\left(\frac{\pi}{2}\right)_{-x} \sigma_z]$

Control and Tomographic Read-Out of Single Qubit

Rabi rotation pulse sequence:

experimental Bloch vector:

experimental density matrix:

Sources of Decoherence

Relaxation and dephasing (T₁ and T₂)

■ T₁: energy relaxation time

depolarization, decay

perturbation orthogonal to quantization axis ($\propto \sigma_{x,y}$); e.g. fast charge fluctuations causing transitions

■ T₂: dephasing time

slow perturbation along quantization axis ($\propto \sigma_z$); e.g. magnetic flux noise causing phase randomization

Relaxation Time (T1) Measurement

pulse scheme:

Coherence Time (T2) Measurement: Ramsey Fringes

Ramsey fringes:

Tomography of Ramsey Experiment

experimental Bloch vector:

experimental density matrix:

Evolution of T2 – coherence of superconducting qubits

currently best T1/T2 (transmon):

T1=70us & T2=92us

[Rigetti et al., PRB 86 (2012)

Recent trends – transmon in 3D cavity

Transmon in a three-dimensional cavity: lifetimes (T1) \sim 100 μ s

Questions: Tunabiliy? Scalability?

Coupling Superconducting Qubits – Two-qubit operations.

Entangling two distant qubits

transmission line resonator can be used as a 'quantum bus' to create entangled states

Dispersive two-qubit J-coupling – Energy levels

qubit 1: transition frequency: $\omega_q \approx \sqrt{8E_C E_J} = \sqrt{8E_C E_{J,max} \left|\cos(\pi\Phi/\Phi_0)\right|}$

qubit 2: constant frequency (5.5 GHz)

resonator:

- direct coupling (g ~ 130 MHz)
- mediated J-coupling (J ~ 20 MHz)

Cavity Quantum Electrodynamics (QED) – 2 qubits

Multiple qubits coupled to single mode (Tavis-Cummings Hamiltonian):

$$H = \underbrace{\hbar\omega_r \left(a^{\dagger}a + \frac{1}{2}\right)}_{H_r} + \sum_i \frac{\hbar\omega_{ge}^{(i)}}{2}\sigma_z^{(i)} + \sum_i \hbar g_i(a^{\dagger}\sigma_-^{(i)} + a\sigma_+^{(i)})$$

dispersive regime (2 qubits):

$$\Delta = |\omega_{ge} - \omega_r| \gg g$$

$$H = H_r + \hbar \sum_{i=1,2} \frac{\omega_{ge}^{(i)} + \chi^{(i)}}{2} \sigma_z^{(i)} + \hbar J \left(\sigma_+^{(1)} \sigma_-^{(2)} + \sigma_+^{(2)} \sigma_-^{(1)} \right)$$

coupling strength:
$$J=rac{g_1g_2}{2}\left(rac{1}{\Delta_1}+rac{1}{\Delta_2}
ight)$$

flip-flop interaction mediated by virtual photons

[Majer et al., Nature **449** (2007); Filipp et al., PRA 83, 063827 (2011)]

Avoided level crossing

qubit A swept across resonance with fixed qubit B cavity mediated coupling leads to an avoided crossing

2-qubit gate: √iSWAP gate using ge ↔ eg transitions

|gg>

2-qubit gate: iSWAP gate using ge ↔ eg transitions

$$|\Psi\rangle = \frac{1}{\sqrt{2}} \left(|eg\rangle + |ge\rangle \right)$$

Characterisation of two-qubit state:

Is it sufficient to measure single qubit observables

$$\sigma_x \otimes 1, \ \sigma_y \otimes 1, \ \sigma_z \otimes 1$$
 and

$$1 \otimes \sigma_x, \ 1 \otimes \sigma_y, \ 1 \otimes \sigma_z$$

to fully reconstruct any arbitrary **two**-qubit state?

- 1. Yes it is sufficient.
- 2. No more observables need to be measured.
- 3. Maybe.

Correlation measurement

[Photons: Weihs et al., PRL 81 (1998); supercond. qubits: Steffen et al., Science 313 (2006).

Correlation measurement with individual readout

table of single shot values (±1):

k	$\sigma_z^{\ k}$ 1	
1	+1	
2	-1	
K	-1	
$\langle \ldots \rangle = \frac{1}{K} \sum_k$	$\langle \sigma_z \otimes 1 \rangle = -1/3$	

table of single shot values (±1):

k	$\sigma_z^{\ k}$ 1	$1 \ \sigma_z^{\ k}$	
1	+1	+1	
2	-1	-1	
K	-1	+1	
$\langle \ldots \rangle = \frac{1}{K} \sum_k$	$\langle \sigma_z \otimes 1 \rangle = -1/3$	$\langle 1 \otimes \sigma_z \rangle = 1/3$	

table of single shot values (±1):

k	$\sigma_z^{\ k}$ 1	$1 \ \sigma_z^{\ k}$	$\sigma_z^{\ k}$ $\sigma_z^{\ k}$
1	+1	+1	(+1).(+1) = +1
2	-1	-1	(-1).(-1) = +1
K	-1	+1	(-1).(+1)=-1
$\langle \ldots \rangle = \frac{1}{K} \sum_k$	$\langle \sigma_z \otimes 1 \rangle = -1/3$	$\langle 1 \otimes \sigma_z \rangle = 1/3$	$\langle \sigma_z \otimes \sigma_z \rangle = 1/3$

rotation of qubit: $\langle \sigma_x 1 \rangle$, $\langle 1 \sigma_z \rangle$ and $\langle \sigma_x \sigma_z \rangle$ are measured

or
$$\langle \sigma_x 1 \rangle$$
, $\langle 1 \sigma_y \rangle$ and $\langle \sigma_x \sigma_y \rangle$, a.s.o.

-> all combinations of $\{\sigma_{\rm x},\sigma_{\rm y},\sigma_{\rm z}\}$ give full information about the state

Correlation measurement with joint readout

Circuit QED-Setup:

- single qubit operations
- only single detection device

Two qubit setup

joint averaged read-out of two-qubit state:

dispersive two-qubit Hamiltonian:

$$(\sigma_{z1} = 1 \otimes \sigma_z; \sigma_{z2} = \sigma_z \otimes 1)$$

$$H_0 = \hbar(\omega_r + \underbrace{\chi_1 \hat{\sigma}_{z1} + \chi_2 \hat{\sigma}_{z2}}_{\delta \hat{\omega}_r}) \hat{a}^{\dagger} \hat{a} + \frac{\hbar}{2} \sum_{j=1,2} (\omega_{aj} + \chi_j) \hat{\sigma}_{zj}$$

Homodyne measurement

Amplitude difference (δQ) depends on state of second qubit:

Measurement operator

Homodyne voltage measurement: $Q = \langle \hat{M}_Q \rangle = \text{Tr}[\rho \hat{M}_Q]$

steady state amplitude:

$$\hat{M}_Q = \frac{\kappa}{(\Delta_{rm} + \hat{\delta\omega})_r^2 + (\kappa/2)^2}$$

$$\hat{M}_{Q} = \beta_{00} \operatorname{id} \otimes \operatorname{id} + \beta_{10} \,\hat{\sigma}_{z1} \otimes \operatorname{id} + \beta_{01} \operatorname{id} \otimes \hat{\sigma}_{z2} + \beta_{11} \,\hat{\sigma}_{z1} \otimes \hat{\sigma}_{z2}$$
$$= \alpha_{++} |ee\rangle\langle ee| + \alpha_{+-} |eg\rangle\langle eg| + \alpha_{-+} |ge\rangle\langle ge| + \alpha_{--} |gg\rangle\langle gg|$$

Quantum Teleportation

No local interaction!

classical communication

Qubit A:

$$|\mathsf{Bell}\rangle = \frac{1}{\sqrt{2}}($$

Qubit B, C:

$$|\tilde{\psi}\rangle = e^{i\sigma_x/2}|\psi\rangle = 0$$

C-Phase gate

Tune frequency of qubit A with fast magnetic flux pulses

$$|fg
angle$$
 $|ee
angle$ $|ee
angle$ $|fg
angle \leftrightarrow |ee
angle$ iswap interaction mediated by the resonator $|ge
angle$

$$|ee\rangle \longrightarrow i|fg\rangle \longrightarrow -|ee\rangle$$

$$|eg\rangle \longrightarrow |eg\rangle \longrightarrow |eg\rangle$$

$$|ge\rangle \longrightarrow |ge\rangle \longrightarrow |ge\rangle$$

$$|gg\rangle \longrightarrow |gg\rangle \longrightarrow |gg\rangle$$

Proposal: F. W. Strauch, et al., PRL 91 (2003) First realization: L. DiCarlo, et al., Nature 460 (2009)

C-Phase gate

Tune frequency of qubit A with fast magnetic flux pulses

$$|fg
angle$$
 — $|ee
angle$ $|eg
angle$ — $|fg
angle \leftrightarrow |ee
angle$ iswap interaction mediated by the resonator $|ge
angle$

controlled-phase gate: adds -1 to state $|ee\rangle$

$$U_{cZ_{11}} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \begin{vmatrix} ee \rangle \\ |eg \rangle \\ |ge \rangle \\ |gg \rangle$$

Proposal: F. W. Strauch, et al., PRL 91 (2003) First realization: L. DiCarlo, et al., Nature 460 (2009)

Teleportation Circuit

Teleportation:

transmission of quantum bit (qubit A) from Alice to Bob using a pair of entangled qubits (qubits B+C)

 $|\psi_{C}\rangle = |\psi_{A}\rangle$

Preparation of Bell state Bell Measurement

Measurement + classical communication

Teleportation Circuit

Teleportation:

transmission of quantum bit (qubit A) from Alice to Bob using a pair of entangled qubits (qubits B+C)

$$|\psi_{\!\scriptscriptstyle C}\rangle = |\psi_A\rangle$$

Preparation of Bell state Mea Bell Measurement

Measurement + classical communication

implemented three qubit tomography at step III

ETH Quantum processor platform with 3-Qubits

- Full individual coherent qubit control via local charge and flux lines
- Large coupling strength to resonator
 g ~ 300 350 MHz
- Transmon coherences times:

$$T_1 \sim 0.8 - 1.2 \,\mu\text{s}, T_2 \sim 0.4 - 0.7 \,\mu\text{s}.$$

State tomography of the entangled 3-qubit state

Example: State to be teleported on qubit A is $|\Psi\rangle=\frac{1}{\sqrt{2}}(|g\rangle+i|e\rangle)$

$$|\varphi\rangle = \{|g_A g_B\rangle \otimes |\Psi\rangle_C + |g_A e_B\rangle \otimes \sigma_x |\Psi\rangle_C + |e_A g_B\rangle \otimes \sigma_z |\Psi\rangle_C + |e_A e_B\rangle \otimes (-\sigma_z \sigma_x) |\Psi\rangle_C\}$$

$$\rho = |\varphi\rangle\langle\varphi|$$

Simulating measurement of qubit A and B with projection on $|g_Ag_B\rangle$:

$$\rho_C = \langle g_A g_B | \rho | g_A g_B \rangle
= |\Psi\rangle\langle\Psi|$$

fidelity 88%

DiVincenzo Criteria fulfilled for Superconducting Qubits

for Implementing a Quantum Computer in the standard (circuit approach) to quantum information processing (QIP):

- #1. A scalable physical system with well-characterized qubits. ✓
- #2. The ability to initialize the state of the qubits. \checkmark
- #3. Long (relative) decoherence times, much longer than the gate-operation time. \checkmark
- #4. A universal set of quantum gates. ✓
- #5. A qubit-specific measurement capability. ✓

plus two criteria requiring the possibility to transmit information:

- #6. The ability to interconvert stationary and mobile (or flying) qubits. 🗸
- #7. The ability to faithfully transmit flying qubits between specified locations. \checkmark

