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1 Two-Level approximation

In the two-level (qubit) approximation we only take the lowest two energy eigenstates into
account, i. e. we truncate the sum in in the Cooper-pair box Hamiltonian at N = 1,

H2 = ECN
2
g |0〉〈0|+ EC(1−Ng)

2|1〉〈1| − EJ
2

(|0〉〈1|+ |1〉〈0|)︸ ︷︷ ︸
σ̄x

(1)

= −Eel
2

(|0〉〈0|+ |1〉〈1|σ̄z︸ ︷︷ ︸−EJ2 σ̄x (2)

= −Eel
2
σ̄z −

EJ
2
σ̄x (3)

where we have shifted the zero energy level by −EC(1− 2Ng + 2N2
g ). The electric energy is

then given by Eel = EC(1− 2Ng). In matrix form the Hamiltonian reads

H2 =
1

2

(
−Eel −EJ
−EJ Eel

)
(4)

To transform the Hamiltonian into the eigenbasis we can apply the rotation UHU † with

U = ei
θ
2
σy =

(
cos(θ/2) sin(θ/2)
− sin(θ/2) cos(θ/2)

)
(5)

with θ = arctan(EJ/Eel), which corresponds to a rotation about the y-axis. That this op-
eration diagonalises the Hamiltonian can easily be seen by writing H2 = (ωq/2)~n · ~σ where
~n = (sin θ′, 0, cos θ′)T with θ′ = − arctan(EJ/Eel) as the angle to the z-axis (also called the
mixing angle) and ωq =

√
E2
J + E2

el. A rotation by −θ′ rotates the Hamiltonian to ’point in
the z-direction’,

Hdiag
2 =

ωq
2
σz.

In most of the experiments the qubit is operated at the ’charge sweet spot’ at Ng = 1/2 at
which the curvature of the energy levels as a function of the gate charge is flat. In this case
θ = π/2 and the Pauli operators transform in a simple manner,

σx → −σz (6)
σz → σx (7)

1



2 Single qubit control

We can write the polarisation charge Ng = N0
g + Ng(t) at the gate capacitor as a sum of a

dc-bias N0
g plus a time-dependent part Ng(t) = η cos(ωt+ φ)

H = Hr −
EC(1− 2(N0

g + η cos(ωt+ φ)))

2
σ̄z −

EJ
2
σ̄x.

Working at the charge sweet spot with N0
g = 1/2 we obtain

H = Hr − ECη︸︷︷︸
Ω

cos(ωt+ φ)σ̄z −
EJ
2
σ̄x.

We then rotate the basis to obtain

HCPB =
ωq
2
σz + Ω cos(ωt+ φ)σx = Hr + ~m(t) · ~σ (8)

where the qubit drive strength is Ω ≡ ECη, equivalent to a spin-1/2 particle in the time-
dependent magnetic field

~m(t) =

Ω cos(ωt+ φ)
0

ωq/2


This Hamiltonian describes a driven two level system. Note that it does not take the filtering
of the drive signal from the resonator’s Lorentzian line shape into account: If the qubit is
driven through the resonator with a signal of strength ε the corresponding drive strength is
Ω = εκ/∆, with the linewidth κ of the resonator and the detuning of the qubit from the
resonator ∆ = ωr − ωq.

2.1 Rotating Wave approximation

The Hamilonian in Eq. (8) is explicitly time-dependent and eludes itself from an analytical
solution. We can, however, transform the Hamiltonian into the rotating frame, which rotates
at the frequency of the drive ω. To see what this means we can decompose the oscillating
field pointing along the x-axis into a component rotating clockwise and a component rotating
counter-clockwise in the x− y plane. In simple vector notation this corresponds to writing

cos(ωt+ φ)ex =
1

2
(cos(ωt+ φ)ex + sin(ωt+ φ)ey) +

1

2
(cos(ωt+ φ)ex − sin(ωt+ φ)ey) .

(9)
In terms of the magnetic field m(t) this corresponds to

~m(t) =

Ω cos(ωt+ φ)
0
ωq
2

 =
1

2

Ω cos(ωt+ φ)
Ω sin(ωt+ φ)

ωq
2

+
1

2

 Ω cos(ωt+ φ)
−Ω sin(ωt+ φ)

ωq
4

 (10)

Without the drive the qubit will freely evolve due to the presence of the σz term, i.e. the pres-
ence of an effective magnetic field. Solving Schrödinger equations leads to a time evolution
of

|ψ(t)〉 = e−i
ωq
2
σzt|ψ(0)〉, (11)



the ground state will pick up a positive phase, the excited state a negative phase, and a su-
perposition state (|0〉 + |1〉)/

√
2 will pick up a relative phase difference between ground

and excited state of ωqt which corresponds to a counter-clockwise Larmor (right-hand rule)
pressesion about the magnetic field (|x〉 → |y〉 for ωqt = π/2). We will see that only the
component of ~m(t) in Eq. 10 that rotates also counter-clockwise will contribute significantly
to the evolution of the driven system, while the clockwise component oscillates too fast and
does not contribute.

Transforming the Hamiltonian into the rotating frame means that we apply the unitary trans-
formation

U = ei
ω̃t
2
σz

to the system state,
|φ〉 = U |ψ〉 = ei

ω̃t
2
σz |ψ〉 (12)

The Hamiltonian transforms accordingly,

UHU † U |ψ〉︸ ︷︷ ︸
|φ〉

= i~U
d

dt

U † U |ψ〉︸ ︷︷ ︸
|φ〉

 = i~(UU̇ † +
d

dt
|φ〉) (13)

and therefore
H̃|φ〉 = i~

d

dt
|φ〉 (14)

with
H̃ = UHU † − iUU̇ †. (15)

To calculate H̃ we compute the transformed Pauli matrices,

UσzU
† = σz (16)

UσxU
† = cos(ω̃t)σx − sin(ω̃t)σy (17)

UσyU
† = sin(ω̃t)σx + cos(ω̃t)σy (18)

as well as

UU̇ † = −i ω̃
2
σz (19)

These expression are then used to transform the laboratory frame Hamiltonian of the qubit,

HnonRWA =
ωq
2
σz+

Ω

2
[cos(ωt+ φ)σx + sin(ωt+ φ)σy]︸ ︷︷ ︸

A+

+
Ω

2
[cos(ωt+ φ)σx − sin(ωt+ φ)σy]︸ ︷︷ ︸

A−

.

(20)

Explicitly, we obtain

A± = cos(ωt+ φ) (cos(ω̃t)σx − sin(ω̃t)σy)± sin(ωt+ φ) (sin(ω̃t)σx + cos(ω̃t)σy)(21)
= [cos(ωt+ φ) cos(ω̃t)± sin(ωt+ φ) sin(ω̃t)]σx (22)

+ [− cos(ωt+ φ) sin(ω̃t)± sin(ωt+ φ) cos(ω̃t)]σy (23)
= cos[(ω ∓ ω̃) + φ]σx ± sin[(ω ∓ ω̃)t+ φ]σy. (24)



Choosing ω̃ = ω, i.e. a frame resonant with the drive we end up with

A+ = cosφσx + sinφσy (25)
A− = cos[2ωt+ φ]σx − sin[2ωt+ φ]σy. (26)

The A− terms are rotating with twice the drive frequency, whereas the A+ terms is static.
The total Hamiltonian in the rotating frame (including the gauge term UU̇ † ) reads

Hrot =
ωq − ω

2
σz +

Ω

2
(cosφσx + sinφσy) ≡

δ

2
σz +

Ωx

2
σx +

Ωy

2
σy. (27)

This corresponds to a spin-1/2 particle in the effective magnetic field

m̃(t) =

Ωx

Ωy

δ

 .



2.11.  SWAP gate (virtual photon mediated)
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2.12. Entanglement protocol
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