Quantum Information Processing (Communication) with Photons

Why Photons?

- only weak interaction with environment (good coherence)
- high-speed (c), low-loss transmission ('flying qubits' for longdistance quantum communication)
- good single qubit control with standard optical components (waveplates, beamsplitters, mirrors,...)
- efficient photon detectors (photodiodes,...)
- disadvantage: weak two-photon interactions
 (requires non-linear medium -> two-qubit gates are hard)
- use initially entangled quantum state for:
 - (commercial) quantum cryptography
 - super dense coding, teleportation
 - fundamental tests of quantum mechanics (Bell inequalities)
 - one-way quantum computing

Encoding of quantum information

polarisation

O'Brien et al., Nature Photonics (2009)

spatial mode

• angular momentum, etc...

Linear Optics Quantum Computation – KLM scheme

Idea: Use only beam-splitters, phase shifters, single photon sources and photo-detectors to implement single and two-qubit gates [Knill-Laflamme-Milburn, Nature 409 (2001)]

Prize to pay: non-deterministic + ancilla photons

optical CNOT-gate based on non-linear sign shift gate (NS)

Linear Optics Quantum Computation – KLM scheme

Non-linear sign gate (NS):
$$\alpha|0\rangle + \beta|1\rangle + \gamma|2\rangle \rightarrow \alpha|0\rangle + \beta|1\rangle - \gamma|2\rangle$$

only if a photon is detected in the upper detector and none in the lower, the gate was successful

[Kok, 2010; KLM, Nature, 2001]

transmission probabilities: $\eta_1 = \eta_3 \sim 85\%$; $\eta_2 \sim 17\%$

success probability: 25%
of ancilla photons: 2

Wave plates

birefringent material: polarisation-dependent wave velocity

- F: fast axis, parallel to optical axis
 S: slow axis, perpendicular to opt. axis
- phase shift

$$\phi_i = k_i d = \frac{v_i}{c} k d = \frac{k}{n_i} d$$

n_i...refractive index (i=F,S)

$$n_S > n_F$$

• half-wave plate: π – phase shift between fast and slow component

$$\phi_F - \phi_S = \pi$$
 $\dfrac{k}{n_F} d - \dfrac{k}{n_S} d = \pi$ $d = \dfrac{\lambda}{2} (n_F - n_S)$

Half-wave plate

Entanglement creation - Parametric Down Conversion

Generation of entangled photon pairs using nonlinear medium (BBO (beta barium borate) crystal)

parametric down-conversion

- 1 UV-photon → 2 "red" photons
- · conservation of

energy
$$\omega_p = \omega_s + \omega_i$$
 momentum
$$\vec{k}_p = \vec{k}_s + \vec{k}_i$$

Polarisationskorrelationen (typ II)

Kwiat et al., PRL 75 (1997).

single photon pair: attenuate beam such that $\langle n \rangle \ll 1$

Superdense Coding

task: Transmit two bits of classical information between Alice (A) and Bob (B) using only one qubit. Alice and Bob share an entangled qubit pair prepared ahead of time.

protocol:

- 1) Alice and Bob each have one qubit of an entangled pair
- Bob does a quantum operation on his qubit depending on which
 2 classical bits he wants to communicate
- 3) Bob sends his qubit to Alice
- 4) Alice does one measurement on the entangled pair

Superdense coding

bit to be transferred	Bob's operation	resulting 2-qubit state (Bell states)	Alice's measurement
00	I 2	$I_{2} \psi\rangle = (HV\rangle + VH\rangle)/\sqrt{2} = \Psi^{+}\rangle$	$ \Psi^{+} angle$
01	X ₂ (HWP)	$X_2 \psi\rangle = (HH\rangle + VV\rangle)/\sqrt{2} = \Phi^+\rangle$	$ \Phi^+ angle$
10	$Z_2(QWP)$	$Z_2 \psi\rangle = (HV\rangle - VH\rangle)/\sqrt{2} = \Psi^-\rangle$	$ \Psi^- angle$
11	X_2Z_2 (HWP + QWP)	$X_2Z_2 \psi\rangle = (HH\rangle - VV\rangle)/\sqrt{2} = \Phi^-\rangle$	$ \Phi^- angle$

- two qubits are involved in protocol BUT Bob only interacts with one and sends only one along his quantum communications channel
- two bits cannot be communicated sending a single classical bit along a classical communications channel

Realization of superdense coding

Realization of superdense coding

Mantle, Weinfurter, Kwiat, Zeilinger, PRL 76 (1996)

Quantum Teleportation using Polarization States

parametric down conversion sources of polarization entangled qubits (EPR-source)

Quantum Teleportation using Polarization States

• intial states:

$$\begin{aligned} |\psi_1\rangle &= \alpha |H\rangle + \beta |V\rangle) \\ |\psi_{23}\rangle &= (|HV\rangle - |VH\rangle)/\sqrt{2} \end{aligned}$$

- combine photon to be teleported (1)
 + photon of entangled pair (2) on a
 50/50 beam splitter (BS)
- Bell-state measurement (at Alice)
- analyze resulting teleported state of photon (3)

Recent Experiments

Teleportation over 100 km: [Yin et al. Quantum teleportation and entanglement distribution over 100-kilometre free-space channels, Nature 488 (2012)]

Teleportation over 143 km (with feed-forward):

Future perspectives: On-chip photonics

waveguides, beamsplitters and phase shifters on a chip

