Quantum Information Processing (Communication) with Photons

Why Photons?

- only weak interaction with environment (good coherence)
- high-speed (c), low-loss transmission ('flying qubits' for longdistance quantum communication)
- good **single qubit control** with standard optical components (waveplates, beamsplitters, mirrors,...)
- efficient photon detectors (photodiodes,...)
- disadvantage: weak two-photon interactions
 (requires non-linear medium -> two-qubit gates are hard)
- use initially entangled quantum state for:
 - (commercial) quantum cryptography
 - super dense coding, teleportation
 - fundamental tests of quantum mechanics (Bell inequalities)
 - one-way quantum computing

Encoding of quantum information

polarisation

O'Brien et al., Nature Photonics (2009)

spatial mode

angular momentum, etc...

Linear Optics Quantum Computation – KLM scheme

Idea: Use only beam-splitters, phase shifters, single photon sources and photo-detectors to implement single and two-qubit gates [Knill-Laflamme-Milburn, Nature 409 (2001)]

Prize to pay: non-deterministic + ancilla photons

optical CNOT-gate based on non-linear sign shift gate (NS)

Linear Optics Quantum Computation – KLM scheme

Non-linear sign gate (NS):
$$\alpha|0\rangle + \beta|1\rangle + \gamma|2\rangle \rightarrow \alpha|0\rangle + \beta|1\rangle - \gamma|2\rangle$$

only if a photon is detected in the upper detector and none in the lower, the gate was successful

[Kok, 2010; KLM, Nature, 2001]

transmission probabilities: $\eta_1 = \eta_3 \sim 85\%$; $\eta_2 \sim 17\%$

success probability: 25%
of ancilla photons: 2

Wave plates

birefringent material: polarisation-dependent wave velocity

- F: fast axis, parallel to optical axis
 S: slow axis, perpendicular to opt. axis
- phase shift

$$\phi_i = k_i d = \frac{v_i}{c} k d = \frac{k}{n_i} d$$

n_i...refractive index (i=F,S)

$$n_S > n_F$$

• half-wave plate: π – phase shift between fast and slow component

$$\phi_F - \phi_S = \pi$$

$$\frac{k}{n_F} d - \frac{k}{n_S} d = \pi$$

$$d = \frac{\lambda}{2} (n_F - n_S)$$

Half-wave plate

Waveplates - Operations

half-wave plate:
$$|H\rangle \rightarrow \cos 2\theta |H\rangle + i \sin 2\theta |V\rangle$$

$$|V\rangle \rightarrow i\sin 2\theta |H\rangle + \cos \theta |V\rangle$$

$$U_{HWP}(\theta) = \left(egin{array}{cc} \cos 2 \theta & i \sin 2 \theta \\ i \sin 2 \theta & \cos 2 \theta \end{array}
ight)
ightarrow \pi$$
—rotation about **x-axis**

for
$$\theta=\pi/4$$
: $U_X=e^{i\pi/2}\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)\equiv X$ $U_X|V\rangle=|H\rangle;\,U_X|H\rangle=|V\rangle$

quarter-wave plate: $\phi_F - \phi_S = \pi/2$, $\theta = \pi/4$

(linear -> circular)

$$U_Z = e^{-i\pi/4} \left(egin{array}{cc} 1 & 0 \ 0 & i \end{array}
ight) \equiv Z \longrightarrow \pi$$
/2-rotation about z**-axis**

$$|L\rangle = \frac{1}{\sqrt{2}} \left(|H\rangle + i |V\rangle \right) \equiv \frac{1}{\sqrt{2}} \left(\begin{array}{c} 1 \\ i \end{array} \right)$$

$$U_{Z}|L\rangle \propto (|H\rangle - |V\rangle)/\sqrt{2} = |A\rangle$$

 $\lambda/2$ and $\lambda/4$ wave plates are sufficient for QIP!

Entanglement creation - Parametric Down Conversion

Generation of entangled photon pairs using nonlinear medium (BBO (beta barium borate) crystal)

parametric down-conversion

- 1 UV-photon → 2 "red" photons
- conservation of

energy
$$\omega_p = \omega_s + \omega_i$$

momentum $\vec{k}_p = \vec{k}_s + \vec{k}_i$

• Polarisationskorrelationen (typ II)

$$\left|\Psi^{-}\right\rangle = \frac{1}{\sqrt{2}} \left(\left| H \right\rangle \left| V \right\rangle - \left| V \right\rangle \left| H \right\rangle \right)$$

Kwiat et al., PRL 75 (1997).

Superdense Coding

task: Transmit two bits of classical information between Alice (A) and Bob (B) using only one qubit. Alice and Bob share an entangled qubit pair prepared ahead of time.

protocol:

- 1) Alice and Bob each have one qubit of an entangled pair
- Bob does a quantum operation on his qubit depending on which
 classical bits he wants to communicate
- 3) Bob sends his qubit to Alice
- 4) Alice does one measurement on the entangled pair

Superdense coding

bit to be transferred	Bob's operation	resulting 2-qubit state (Bell states)	Alice's measurement
00	I 2	$I_2 \psi\rangle = (HV\rangle + VH\rangle)/\sqrt{2} = \Psi^+\rangle$	$ \Psi^{+} angle$
01	X ₂ (HWP)	$X_2 \psi\rangle = (HH\rangle + VV\rangle)/\sqrt{2} = \Phi^+\rangle$	$ \Phi^+ angle$
10	Z ₂ (QWP)	$Z_2 \psi\rangle = (HV\rangle - VH\rangle)/\sqrt{2} = \Psi^-\rangle$	Ψ->
11	X_2Z_2 (HWP + QWP)	$X_2 Z_2 \psi\rangle = (HH\rangle - VV\rangle)/\sqrt{2} = \Phi^-\rangle$	$ \Phi^- angle$

- two qubits are involved in protocol BUT Bob only interacts with one and sends only one along his quantum communications channel
- two bits cannot be communicated sending a single classical bit along a classical communications channel

Realization of superdense coding

Swiss Federal Institute of Technology Zurich

Realization of superdense coding

Mantle, Weinfurter, Kwiat, Zeilinger, PRL 76 (1996)