Factorization of 15 using NMR	Andrin Doll	QSIT Student Presentation	May 31, 2013	1 / 12

Student Presentation

Factorization of 15 on an NMR quantum computer

Based on

L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, I. L. Chuang, Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance, Nature 414 (2001) 883–887

D-PHYS, Quantum Systems For Information Processing (QSIT) http://www.qudev.ethz.ch/QSIT FS 2013/

Factorization of 15 using NMR	Andrin Doll	QSIT Student Presentation	May 31, 2013 2 / 12
Introduction	NMR exp	Summary	References
000	00000	0	
Motivation			

- Prime Factorization
 - Classically $O(2^{l/3})$
 - Shor $O(I^3)$
- Factorization of large primes (such as encryption keys) feasible on an *ideal* quantum computer
- What about Shor's algorithm on actual quantum computers?
 - \Rightarrow 15 factorized using *compiled* algorithms
 - 2001: Nuclear spins on a molecule [1]
 - 2009: Photons integrated on a chip [2]
 - 2012: Phase of Josephson junctions [3]
 - \Rightarrow as well as 21
 - 2012: Photons [4]

Factorization of 15 using NMR	Andrin Doll	QSIT Student Presentation	May 31, 2013	3 / 12
Introduction	NMR exp	Summary	References	
000	00000	0		

Factorization of 15 using Shor's algorithm

•
$$f(x) = a^x \mod 15$$

• Possible $a = [2, ..., 4, ..., 7, 8, ..., 11, ..., 13, 14]$

- **2** Find period *r* in *x* of f(x)
 - $a^2 \mod 15 = 1 \text{ for } a = [4, 11, 14]$ $\Rightarrow r = 2$
 - $a^4 \mod 15 = 1$ for a = [2, 7, 8, 13] $\Rightarrow r = 4$
- \bigcirc gcd $(a^{\frac{r}{2}} \pm 1, 15)$
 - $\gcd(11^{\frac{2}{2}} \pm 1, 15) = [\gcd(10, 15), \gcd(12, 15)] = [5, 3]$
 - $gcd(2^{\frac{4}{2}} \pm 1, 15) = [gcd(3, 15), gcd(5, 15)] = [3, 5]$
- \Rightarrow Largest period of r is 4

Factorization of 15 using NMR	Andrin Doll	QSIT Student Presentation	May 31, 2013	4 / 12
Introduction	NMR exp	Summary	References	
000	00000	0		

Quantum Implementation

- Period finding in x by inverse QFT
- Parallelization
 - Qbits in superposition states to store x and f(x)
 - Exponential scaling of Hilbert space
 - ⇒ Classically exponential problem runs in polynomial time

Example: N = 15, $a = 11 \Rightarrow r = 2$ 3 gbits for *n*, 4 gbits for *m*

$$\begin{split} \psi_{1} &\propto |0\rangle + |1\rangle + |2\rangle + |3\rangle + |4\rangle + |5\rangle + |6\rangle + |7\rangle \\ \psi_{2} &\propto |0\rangle |1\rangle + |1\rangle |11\rangle + |2\rangle |1\rangle + |3\rangle |11\rangle \\ &+ |4\rangle |1\rangle + |5\rangle |11\rangle + |6\rangle |1\rangle + |7\rangle |11\rangle \\ &= \{|0\rangle + |2\rangle + |4\rangle + |6\rangle \} |1\rangle \\ &+ \{|1\rangle + |3\rangle + |5\rangle + |7\rangle \} |11\rangle \\ \psi_{3} &\propto \{|0\rangle + |4\rangle \} |1\rangle \qquad | \text{ delta comb } \Leftrightarrow \text{ delta comb} \\ &+ \{|0\rangle - |4\rangle \} |1\rangle \qquad | \text{ sample shift } \Leftrightarrow \text{ linear phase} \end{split}$$

Readout of ψ_3 on *n* results in superposition of $|0\rangle$ and $|4\rangle$, i.e. $|000\rangle$ and $|100\rangle$

see also lecture notes (the last few slides, but values above for \emph{m} represent actual f(x) value.)

Factorization of 15 using NMR	Andrin Doll	QSIT Student Presentation	May 31, 2013 5 /	/ 12
Introduction	NMR exp	Summary	References	
000	00000	0		

NMR Quantum Computation

Basics [5]

- Qbits
 - Ensemble of distinguishable and coupled nuclear spins
 - Coherence times > 1 sec
 - Highly mixed ground state, $\frac{\Delta E}{kT} \ll 1$

Gates

- Single Qbit
 - Spin-selective RF pulses, σ_x , σ_y or combination, 0.2 - 2 ms (and composite σ_z)
- Double Qbit
 - Controlled phase by evolution under J for $t = \frac{1}{2J} \approx 5 10$ ms
- Readout
 - Weak ensemble measurement of σ_x and σ_y

Factorization of 15 using NMR	Andrin Doll	QSIT Student Presentation	May 31, 2013	6 / 12
Introduction	NMR exp	Summary	References	
000	00000	0		

Quantum Circuit for NMR

- Qbit assignment (N = 15)
 - $r_{max} = 4$ requires x = 0...3
 - \Rightarrow 2 qbits for *n* sufficient, 3 qbits chosen for exp
 - *m* requires [log₂(N)]
 qbits
- Initialization
 - Temporal averaging for pseudopure state
- Optimizations
 - Gates reduced for $f(x) = a^x \mod N$
 - $\Rightarrow \text{ compiled circuits for} \\ a = 11 \text{ and } a = 7$

Temporal averaging: Creation of pseudopure state

qbit swapping + averaging 36 x

Factorization of 15 using NMR	Andrin Doll	QSIT Student Presentation	May 31, 2013 7 / 12
Introduction	NMR exp	Summary	References
000	00000	0	

Pulse Sequence

- 300+ pulses
 - $\frac{\pi}{2}$ -pulses
 - Gaussian-shaped profile
 - Compensation of J
 - \Rightarrow Selective excitation
 - either H or CNOT
 = H-CPHASE-H
 - π -pulses
 - Hermite-shaped profile
 - Compensation of J
 - \Rightarrow Selective refocusing
 - to rewind J, where unwanted
 - z-rotations
 - Used for f(x) and iQFT

Factorization of 15 using NMR	Andrin Doll	QSIT Student Presentation	May 31, 2013 7 / 12
Introduction	NMR exp	Summary	References
000	00000	0	

Pulse Sequence

- 300+ pulses
 - $\frac{\pi}{2}$ -pulses
 - Gaussian-shaped profile
 - Compensation of J
 - ⇒ Selective excitation
 - either H or CNOT
 = H-CPHASE-H
 - π -pulses
 - Hermite-shaped profile
 - Compensation of J
 - \Rightarrow Selective refocusing
 - to rewind J, where unwanted
 - z-rotations
 - Used for f(x) and iQFT

- \rightarrow J refocused during free evolution
- \rightarrow J compensated under RF pulse

Factorization of 15 using NMR	Andrin Doll	QSIT Student Presentation	May 31, 2013 8	/ 12
Introduction	NMR exp	Summary	References	
000	00000	0		

Results for a = 11

Expected result:

 $\psi_2 \propto \{|0\rangle + |2\rangle + |4\rangle + |6\rangle\} |1\rangle \\ + \{|1\rangle + |3\rangle + |5\rangle + |7\rangle\} |11\rangle$

$$\begin{split} \psi_{3} \propto \left\{ \left| 0 \right\rangle + \left| 4 \right\rangle \right\} \left| 1 \right\rangle \\ + \left\{ \left| 0 \right\rangle - \left| 4 \right\rangle \right\} \left| 11 \right\rangle \end{split}$$

Analysis of Spectra:

For two spins I and S in pseudo-pure states a and b, upon a $\frac{\pi}{2}$ pulse to I

obs
$$\propto (-1)^a (I_X + (-1)^b 2I_X S_Z)$$

⇒ spectral phase reveals state of observer spin ⇒ actual spectral line depends on state of coupled spin

here: several spectral peaks due to multiple spins detection of observer spin state via spectral phase

 \Rightarrow desired superposition of $|000\rangle$ and $|100\rangle$, i.e. $|0\rangle$ and $|4\rangle$ + artefacts

pseudo

Frequency with respect to $\tau_j/2 \neq$ (Hz)

Factorization of 15 using NMR	Andrin Doll	QSIT Student Presentation	May 31, 2013	9 / 12
Introduction	NMR exp	Summary	References	
000	00000	0		

Results for a = 7

Expected result:

$$\begin{split} \psi_2 &\propto \left\{ \left| 0 \right\rangle + \left| 4 \right\rangle \right\} \left| 1 \right\rangle \\ &+ \left\{ \left| 1 \right\rangle + \left| 5 \right\rangle \right\} \left| 7 \right\rangle \\ &+ \left\{ \left| 2 \right\rangle + \left| 6 \right\rangle \right\} \left| 4 \right\rangle \\ &+ \left\{ \left| 3 \right\rangle + \left| 7 \right\rangle \right\} \left| 13 \right\rangle \end{split}$$

$$\begin{split} \psi_{3} &\propto \left\{ \left| 0 \right\rangle + \left| 2 \right\rangle + \left| 4 \right\rangle + \left| 6 \right\rangle \right\} \left| 1 \right\rangle \\ &+ \left\{ \left| 0 \right\rangle - i \left| 2 \right\rangle - \left| 4 \right\rangle + i \left| 6 \right\rangle \right\} \left| 7 \right\rangle \\ &+ \left\{ \left| 0 \right\rangle - \left| 2 \right\rangle + \left| 4 \right\rangle - \left| 6 \right\rangle \right\} \left| 4 \right\rangle \\ &+ \left\{ \left| 0 \right\rangle + i \left| 2 \right\rangle - \left| 4 \right\rangle - i \left| 6 \right\rangle \right\} \left| 13 \right\rangle \end{split}$$

Analysis of Spectra:

detection of observer spin state via spectral phase

 $\Rightarrow \text{desired superposition of} \\ |000\rangle \\ |010\rangle \\ |100\rangle \\ |110\rangle \\ \text{i.e.} |0\rangle, |2\rangle, |4\rangle, |6\rangle \\ + \text{ even more pronounced artefacts}$

Frequency with respect to $\tau_j/2\neq$ (Hz)

Factorization of 15 using NMR	Andrin Doll	QSIT Student Presentation	May 31, 2013	10 / 12
Introduction	NMR exp	Summary	References	
000	00000	•		

Summary

- Successful in-principle demonstration
- Calculation of $f(x) = a^x \mod N$ expensive
- \Rightarrow Compiled/optimized algoritm, based on known *a* and *r*
 - Simplest case already prone to decoherence
- \Rightarrow Experimental realization very demanding
 - Main reasons:
 - Number of qbits
 - $3 \log_2(N)$ for full-scale implementation
 - Number of gates
 - n(n+1)/2 for iQFT plus way more for modular exponentiation

(Factorization of N = 21 using photons [4] was achieved by an iterative decomposition of the iQFT. The execution time was therefore increased, whereas only one qbit was required for n)

Factorization of 15 using NMR	Andrin Doll	QSIT Student Presentation	May 31, 2013 11 / 12
Introduction	NMR exp	Summary	References
000	00000	0	
-			

References

- L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, I. L. Chuang, Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance, Nature 414 (2001) 883–887.
- [2] A. Politi, J. C. F. Matthews, J. L. O'Brien, Shors quantum factoring algorithm on a photonic chip, Science 325 (5945) (2009) 1221.
- [3] E. Lucero, R. Barends, Y. Chen, J. Kelly, M. Mariantoni, A. Megrant, P. O'Malley, D. Sank, A. Vainsencher, J. Wenner, T. White, Y. Yin, A. N. Cleland, J. M. Martinis, Computing prime factors with a Josephson phase qubit quantum processor, Nat Phys 8 (2012) 719–723.
- [4] E. Martin-Lopez, A. Laing, T. Lawson, R. Alvarez, X.-Q. Zhou, J. L. O'Brien, Experimental realization of Shor's quantum factoring algorithm using qubit recycling, Nat Photon 6 (2012) 773 – 776.
- [5] J. A. Jones, Quantum computing with NMR, Prog Nucl Magn Res Sp 59 (2) (2011) 91 120.

Figures adopted from [1] or lecture slides

Factorization of 15 using NMR	Andrin Doll	QSIT Student Presentation	May 31, 2013	12 / 12
Introduction	NMR exp	Summary	References	
000	00000	0		

Questions?

D-PHYS, Quantum Systems For Information Processing (QSIT) http://www.qudev.ethz.ch/QSIT FS 2013/