Student Presentations

Goals:

- Interpret current research results in quantum information science
- Extract relevant information from scientific papers, possibly neglecting details
- Communicate your understanding of a scientific topic in an aural presentation
- Summarize the scientific content of a paper in short written form (abstract)

Student Presentations

- Topics: Implementations of quantum information processing
- Goal: present key features of implementation
- Material: research paper + review articles
- Preparation: teams of 2 students, advice and support by TA:

Stefan Filipp@phys.ethz.ch

Farruh Abdumalikov: abdumalikov@phys.ethz.ch

- Duration: presentation + discussion (30 min talk +15 discussion)
- **Presentation**: PowerPoint, blackboard, transparencies
- Time: within the QSIT exercise class on Friday
- Abstract: short, concise abstract (~100-150 words) of your presentation
- Feedback: evaluation form on both content and presentation of your talk

Topics

date	#	topic	student 1	student 2
3. 5.	1	Superconducting circuits: Toffoli gate and error correction		
3. 5.	2	Superconducting circuits: Grover algorithm		
10. 5.	3	Trapped Ions: Digital quantum simulation		
10. 5.	4	Trapped Ions: Quantum networks		
17. 5.	5	Quantum Dots: Implementing gates in quantum dot spin qubits		
17. 5.	6	Quantum Dots: Coupling of quantum dots to a resonator		
24. 5.	7	Photons: Experimental violation of Bell inequalities		
24. 5.	8	Photons: Experimental demonstrations of teleportation		
31. 5.	9	NMR: Shor algorithms – Theoretical background		
31. 5.	10	NMR: Shor algorithms – Experimental realization		

Your Presentation Schedule

- until April 19: sign up for a presentation (paper list or per email)
- <u>2-3 weeks</u> before your presentation: have **a look at the papers**
- <u>2 weeks</u> before: meeting with TA (write email to S. Filipp or A. Abdumalikov) to discuss relevant aspects which should be in your presentation
- in the week before: discuss your slides with TA, first draft of the abstract
- 1-2 days before: send final version of abstract to your TA

