
CHAPTER 1

Introduction to Quantum Information Science

1.1. Background

Quantum Information Science is the amalgamation of Computer Science, Quantum Physics, and Infor-
mation Theory, so we will begin by looking at the relevant history of these three �elds.

At the turn of the 20th Century physicists were trying to explain a plethora of phenomena and ex-
perimental results using classical Newtonian based physics, but were not producing fruitful or satisfactory
solutions. Speci�cally, the characteristic absorption and emission of electromagnetic waves by atomic gasses,
the structure of an atom, the characteristic black body spectrum at low temperatures, and the photoelectric
e�ect were the most prominent. In all respects classical physics could not explain these phenomenon, and
Max Plank, in a stroke of pure genius, or perhaps desperate luck, started a physics revolution. He questioned
the fundamental assumption that energy is always a continuous quantity, and instead postulated that the
energy of a harmonic oscillator is a multiple of a smallest quantum unit of energy. With this idea he was
able to properly explain the black-body radiation spectrum. Then Einstein used the quanta idea to explain
the photoelectric e�ect, and Bohr used it with de Broglie's matter wave hypothesis to explain the stability
of atoms. A small snowball was set in motion down the mountain of physics leading to the successful ex-
planation of all of these phenomena and more, as well as the formal construction of Quantum Mechanics.
Quantum Mechanics is governed by a few postulates which may be stated di�erently in di�erent context,
but four core postulates for our concerns will be

(1) The complete state of a physical system is described by a complex wave function (equivalently a

vector in Hilbert Space) Ψ(r, t), which is square integrable and normalizable i.e. 1 =
´

all space
|Ψ|2.

(2) The time evolution of any closed system is described by the time-dependent Schrodinger equation

ĤΨ = i~ d
dtΨ and is assumed to evolve unitarily.

(3) The measurement postulate states that all dynamical variables can be represented by a linear
Hermitian operator with eigenvalues λi and eigenvectors |λi〉. The outcome of a measurement will
always be one of the eigenvalues with probability |〈λi |Ψ 〉|2and the measurement will reduce the
state of the system from |Ψ〉 to |λi〉.

(4) Composite quantum system are completely described by the tensor product1 of the system compo-
nent states. |Ψ12〉 = |Ψ1〉 ⊗ |Ψ2〉

These postulates have been innumerably successful at explaining the world, but the consequences are not
always easy to understand, or calculate. In fact, one of the reasons to build a quantum computer, which
is governed by these postulates, is to attempt to better simulate and calculate large and complex quantum
systems that can not be easily solved by hand or e�ciently with a classical computer.

One may argue about when Computer Science actually began as it is a science for performing compu-
tations and computational algorithms and instruments have been around for centuries. However, for our
purposes we will go back only as far as 1936 when Turing gave a general de�nition of a programmable
computing machine called a Universal Turing Machine that in many regards is a theoretical model for the
modern computer. Based on an in�nite string of memory tape and a few principle set of operations, Turing
demonstrated that such a machine could solve any problem that could be solved �algorithmically�. Indepen-
dently around the same time Alonzo Church, created a lambda calculus for de�ning functions, as we would
know them in computer programing, and showed that these functions could be solved �algorithmically�.
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Together they formed the Church-Turing thesis, one of the basis concepts in modern computing science, in
which the strong version is now stated as: any algorithmic process that can be executed on any hardware can
be simulated e�ciently on a Turing machine. E�ciently meaning in polynomial time dependent on input
size, as opposed to super-polynomial time, usually exponential. In fact there are many versions of this thesis,
many interpretations and extensions, as well as a built-in ambiguity to the de�nitions used in the thesis.
Regardless, the Church-Turing thesis is a legitimate starting point for the desire to create a Universal Turing
machine, which in many regards is the modern computer. Around this time, John Von Neumann de�ned the
basic components necessary for realizing such a computer for practical use. It was another 10 years however,
until the transistor was �rst developed at Bell Labs and development for modern, fast, small and low cost
computers would be realized. Soon after that the development of computers followed Moore's law which
follows an exponential increase in the number of transistors on a processing unit of equal size. For many
decades we have achieved this, but �nally the limits of current CMOS technology have been reached and a
hunt for newer materials and architectures has begun.

Finally, Information and Communication theory began with a paper in 1948 by Claude Shannon in which
a mathematical framework was formalized for the concept of �information�. With this framework he worked
out two fundamental theorems in information theory. The �rst demonstrates the required resources necessary
for communication and storage of information in the absence of noise in the communication channel. The
second theorem de�nes a limit of reliable information which can be sent over a channel in the presence of
noise. This lead to the development of error-correction codes central to modern communication. When
scientists began wondering what these theorems might look like if subject to quantum laws, they found some
startling and exciting results. These include things like the no-cloning theorem, teleportation, and bizarre
behavior like non-zero capacity for communication between two nodes through two quantum channels in
opposite directions, each individually with zero communication capacity due to noise.

Another o�shoot of this �eld, though established well before it, is cryptography or the transmission of
information securely and secretly. In the pursuit of creating more and more secure forms of cryptography,
cytologists were naturally led to quantum based system, were information seems inherently secure. A common
concern for secure transmission of information is the Man-In-The-Middle attack in which an eavesdropper
sits on the channel of communication and listens to the information being sent. You might be able to
encrypt the communication so that the eavesdropper can not understand what is being said, but in most
forms of encryption a key has to be shared between the two parties, and physically sharing the key is not
always an option. In this case if the man in the middle is there from the beginning and catches the key,
he can decrypt everything. Well, due to the nature of quantum mechanics, this attack appears nulli�ed
since once a �measurement� of the information is taken it is irreversibly lost and can not be copied. If an
eavesdropper is in the channel, the information will never be received by the intended receiver, since it will
be destroyed by the eavesdropper. A proper communication protocol will notice this and stop transmission.
Today, simple quantum devices have been built to distribute keys between two sources securely. Do not
think that this is the conclusion to the �eld of cryptography, on the contrary it is really just the beginning of
a new era, a quantum era. Signi�cant advances and understanding are necessary to better harness quantum
cryptographic power as well as understand its limitations.

It was only after the maturity of these three �elds and advances in technology and understanding of
quantum systems that Quantum Information Science could really come to fruition. Particularly, advances
in controlling and measuring the state of single particles, hitting the limits of current computing technology,
the discovery of superconducting materials, refrigeration technology, laser technology, ion trapping, etc have
all made QIS and quantum computation actually possible. So the question now is what is QIS?

1.2. Quantum Information Science

Quantum information science is a broad �eld encompassing all things related to computation, communi-
cation, storage, encryption, etc. which are based on the laws of quantum mechanics. It also tries to formulate
procedures and suggest experiments to better understand basic properties of quantum systems and develop
intuition for the predictions of quantum mechanics through experiments.

One of the �rst events to shape the �eld of QIS can be traced back to a paper in 1982 by Richard
Feymann in which he stated that a computational device based on the laws of quantum mechanics could
most e�ectively simulate large scale quantum systems. Though a classical computer can simulate quantum
systems, it does so incredibly ine�ciently. The biggest ine�ciency is that a classical computer inherently
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stores classical information and classically there is nothing like a superposition state. However, a computer
based on quantum mechanics storing quantum information in a quantum bit, inherently has the ability to
be in superposition states as well as entangle with other qubits naturally.

The next major step came in 1985 when David Deutsch was searching for a device that could e�ciently
simulate an arbitrary physical system. His main goal was to disprove the strong Church-Turing thesis and
�nd something more powerful then a Universal Probabilistic Turing Machine. According to physics, nature
is inherently quantum mechanical and follows the quantum postulates, so naturally Deutsch proposed a
quantum mechanical based system, a quantum computer. If this was all he did it would not be all that
impressive, but in fact he was able to show that in a particular case the use of quantum mechanics allowed a
computation speed up over a classical computation. This was the �rst quantum algorithm, and it is provably
a factor of 2 times faster than any classical computation.

The algorithm itself determines if a function is �balanced� that is the left side of an equation is equal
to the right side. Now classically this can be done by calculating the left side, and right side independently
then comparing the results. However, with the power of quantum superposition, the quantum computer
can basically calculate both sides simultaneously, thereby requiring only one calculation instead of two.
Unfortunately, this is not a major increase in speed, nor is it a terribly interesting problem from a computer
scientist stand point. However, it is a proof of concept that quantum computers can be more powerful than
classical ones.

Over the next decade Deutsch and others improved and discovered a few more quantum algorithms that
were provably faster than the classical counterparts. However, the largest breakthrough came in 1994 when
Shor developed a quantum algorithm that e�ciently �nds prime factors. The di�culty in factoring large
number is the basis of many encryption models. One such encryption model is RSA and is used widely
around the world to securely encrypt information, including government communications. The best known
classical algorithm to factor a 5,000 digit number with 1ns per instruction speed would takes on the order of
5 trillion, yes trillion, years to solve. Using a quantum computer, of equal speed and with the use of Shor's
algorithm, may require just over 2 minutes. That is a signi�cant speed increase on a signi�cant computer
science problem. It has yet to be proven that there is some undiscovered classical algorithm out there that
can beat Shor's algorithm, so in that respect the race is still on. However, since then I think there has be
signi�cantly larger interest and money to create a quantum computer.

There have been a few other key algorithms created that are provably faster than classical ones, including
Grover's search algorithm, but unfortunately these algorithms are often for problems with unknown or
unimportant applications. The search for e�cient and useful quantum algorithms is a large and di�cult
problem in the �eld of QIS. Quantum algorithms are often adverse to intuition and common everyday
experiences. No one yet even knows why, or what particular aspect of quantum computing might make it
stronger than classical computing. Also, quantum computing is in its infancy while classical computing has
had many decades of research and huge quantities of money in advancing the technology. For a quantum
algorithm to be interesting it has to beat, and probably signi�cantly beat classical algorithms, which is no
easy task. Of course we are also limited by the physical realization of a quantum computers to test these
algorithms and perhaps create new ones. To date Shor's algorithm has been experimentally realized up to
factoring 21, far from practical use.

1.3. General Quantum Computation and Qubits

A lot more could be said about the history of Quantum Information Science, but the major point of this
course is to learn about the many physical systems which have realized basic quantum computation. First,
we will cover the general characteristics of quantum computation which must ultimately be realized by any
physical system that is to successfully become a quantum computer of sorts. In 2000, David DiVincenzo,
while working at IBM, published a paper outlining the necessary criteria for a physical system to successfully
implement quantum information processing. The 5 core criteria are

(1) A scalable physical system with well characterized qubits
(2) The ability to initialize the state of the qubits
(3) Long coherence times, much longer than the gate operations time
(4) A universal set of quantum gates with high �delity
(5) Qubit-speci�c measurement capabilities
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He also added two supplementary criteria relating to the transmission and movement of information:

(6) The ability to convert from stationary to mobile, ��ying� qubits and back.
(7) The ability to faithfully transmit �ying qubits from one location to another.

These criteria laid out by DiVincenzo will be our guiding light for analyzing physical systems to determine
if they are capable of becoming scalable universal quantum information processing systems. However, before
we get into the physical systems, these criteria bring up some general terms which we can discuss �rst.
Namely, the concept of a �qubit�, �gates�, �measurement�, and �coherence�.

Figure 1.3.1. Visuals of coin states representing clas-
sical and quantum states. a) and b) are classical states
and also quantum pure basis states. c) and d) are
quantum superpositions states which can occur via ro-
tations about these two orthogonal axes. e) another
quantum superposition state composed of two rota-
tions, one about each rotation axis.

A qubit is what you would expect, a quantum
bit of information. As a comparison, a classical bit
is quite easy to understand, as the smallest unit of
information a bit has two possible values, 0 or 1. Of
course this could also be represented as �on� or �o��,
�true� or �false�, �up� or �down�, �heads� or �tails�.
That is to say it is de�ned by two non-coexistent
logical states and the classical bit can only ever be
in one state or the other. In a modern physical re-
alization of a classical bit, the �bit� is normally a
level of voltage across a particular element repre-
senting the bit in an electrical circuit. This could
be across a capacitor or a transistor, etc. A quan-
tum bit is realized in a quantum mechanical system
with two distinct states, much like a classical bit,
but due to the superposition ability of quantum me-
chanical systems a qubit can exist in a continuum
of possibilities between and including 0 and 1.

This superposition of states is one of the key dif-
ferences between a classical bit and a quantum bit.
As an analogy to try to conceptualize this di�erence
we will think of a coin in two di�erent contexts. The
�rst context is a classical one in which a very thin,
but radially large, coin falls near the surface of the
earth. When we release the coin it will always fall
towards the ground and end up in a state of heads
or tails, or if we precisely control the fall, we can
cause the coin to end up in a heads or tails state.
The end result, however, is always the coin on the
ground with either heads or tails facing up. The
second context is the same coin in a special laboratory, which, to the best of its ability, has found a way to
nullify earth's gravitation �eld inside a box. In this box we can control the orientation of the coin by rotating
it about any axis perhaps with precisely controlled air jets on the inside of the box. In this context the the
coin is in a continuum of states between heads and tails and also in 2 di�erent dimensions. That is to say
that rotations between heads and tails can occur around 2 perpendicular axis that line in the thickness of
the coin, while rotations around an axis through the face of the coin does not change the amount of �heads�
or �tails� the state of the coin is in.

One could imagine a unit vector normal to the face of the �heads� side of the coin and recognize that the
vector can sweep out a unit sphere. In fact, we will use this concept of a vector in a unit sphere to visualize
the general state of a single qubit. The sphere in this context is called a Bloch sphere. The general state of
the qubit can be written mathematically as

(1.3.1) |Ψ〉 = α |0〉+ β |1〉

where α and β are complex numbers which allow for the two dimensionality of rotations and |0〉, |1〉 are
generalized �computational� basis states of the system. We could have easily used |Heads〉and |Tails〉, spin
up and down, existence and non-existence etc. Any quantum mechanical system with two orthogonal states
can de�ne the basis states of the system. Typically, this is two distinct levels of energy quantized by some
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quantum mechanical dynamics, such as a harmonic potential, or spin states in a magnetic �eld. The �rst
postulate of quantum mechanics tells us that |Ψ〉 must be normalizable so we have the constraint that

|α|2 + |β|2 = 1. Using the Bloch sphere context we can write |Ψ〉 in the most general case in terms of
spherical coordinates as

(1.3.2) |Ψ〉 = eiγ
(

cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉
)

where γ, θ, and φ are all real numbers. The angles θ and φ are de�ned in Figure 1.3.2. Typically, the global
phase eiγ is omitted because it has no observable e�ects on single qubit observables. This gives the relations

(1.3.3) α = cos
θ

2
β = eiφ sin

θ

2

The angles θ correspond to rotations of the state vector in the x-z plane while the φ rotations correspond
to rotations of the state vector in the x-y plane. The equator of the Bloch sphere correlates to an equal
superposition of the two basis states |0〉 and |1〉 such that |α|2 = |β|2 = 1

2 and the wave function has the

general form 1√
2

(
|0〉+ eiφ |1〉

)
. You may be wondering why we have de�ned the system with an angle of

θ/2 instead of just θ, this is due to the fact that a quantum mechanical two-level system is actually periodic
with 4π rotations. Mathematically, |Ψ〉θ=0 = − |Ψ〉θ=2π = |Ψ〉θ=4π.

Figure 1.3.2. The Bloch Sphere is a physical represen-
tation of the state of a single qubit

The basis states are the eigenvectors of the
chosen reference frame and are ultimately the ob-
servable states of that basis. If we �measure� the
state of the coin in the computational basis we will
only ever �nd it in the �tails� or �heads� state, a
0 or 1 state with probability |α|2and |β|2 respec-
tively. This is a consequence of the measurement
postulate and the �collapse� of the quantum wave
function into a classical observable variable. We
will address the �measurement� issue a little later.
Of course we could measure the system in some
other basis, but the results will only ever be the
eigenvectors of that basis.

Returning to the coin in a special box analogy,
it is as if the only way to determine the state of
the coin is to open the box and break the seal pro-
tecting the coin from earth's gravity. This causes
the coin to fall to the ground and obtain either a
�heads� or �tails� state. The quantum state before
the box is opened will probabilistically determine
the �measured� state of the coin. That is the α's
and β's tell you how likely the coin is to be ori-
ented when it hits the ground. The power of the quantum computer is not in the measurement results,
it is in the new possibilities of dynamics that can occur when the coins are in that delicate �oating state.
Ultimately, when we are considering a computation the end result of algorithms should be the same, but
how the algorithm is done is what separates degrees of functionality. The fact that a quantum computer can
ultimately do anything a classical computer can do and more, suggests the power of quantum computing,
especially when we consider the fact that the theory of quantum mechanics has been more successful at
explaining the natural world than has classical physics.

In summary a classical bit is only ever in two states, which we can think of as a vector which points either
up or down. A quantum bit on the other hand is a vector that can be in any state on the Bloch sphere.
A classical bit follows the laws of classical mechanics, while a quantum bit follows the laws of quantum
mechanics. A classical bit can only exist in either of two non-coexistent logical states, while a quantum bit
can exist in an arbitrary superposition of both of these states.
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1.4. Qubit Manipulations and Gates

The second DiVincenzo criteria tells us that we need to be able to initialize our qubits. Using our qubit
model of the Bloch sphere, this means most simply that we need to be able to put our qubit vector into
any position on that sphere. It should be quite easy to convince yourself that there are 4 unique rotation
operations which allow the vector to transform from any state into any other state in the Bloch sphere.
These 4 rotations operations are rotations about each Cartesian axis, and an identity rotation which does
not alter the vector. In fact, with a little thought you will see that only two rotation axis are required for
universal state creation.

The language of quantum mechanics is Linear Algebra and the dynamics are governed by the time
dependent Schrodinger equation

(1.4.1) i~
d

dt
|Ψ〉 = Ĥ |Ψ〉

the general solution for a time-independent Hamiltonian is

(1.4.2) |Ψ(t)〉 = exp

(
− i
~
Ĥt

)
|Ψ0〉

where |Ψ0〉 is the initial state of the system. Our rotation transformations will occur as a result of our
Hamiltonian operator being exponentiated. As it turns out, the Pauli matrices when exponentiated are
perfect rotation matrices about the respective axis. Speci�cally, the Pauli matrices are

(1.4.3) σ̂I =

[
1 0
0 1

]
σ̂X =

[
0 1
1 0

]
σ̂Y =

[
0 −i
i 0

]
σ̂Z =

[
1 0
0 −1

]
but when exponentiated we �nd

RI(Θ) = e−iΘσ̂I/2 =

[
e−iΘ/2 0

0 e−iΘ/2

]
RX(Θ) = e−iΘσ̂X/2 =

[
cos Θ

2 −i sin Θ
2

−i sin Θ
2 cos Θ

2

]
(1.4.4)

RY (Θ) = e−iΘσ̂Y /2 =

[
cos Θ

2 − sin Θ
2

sin Θ
2 cos Θ

2

]
RZ(Θ) = e−iΘσ̂Z/2 =

[
e−iΘ/2 0

0 eiΘ/2

]
You can check the math for yourself as you please. As a quick example a Θ = π rotation about the y axis,

should intuitively �ip the qubit from 0 to 1. Using for our basis states |0〉 =

[
0
1

]
and |1〉 =

[
1
0

]
such

that

RY (π) |0〉 =

[
0 −1
1 0

] [
0
1

]
=

[
−1
0

]
= − |1〉

This is simply a global phase factor which can be ignored in the single qubit case. These rotation matrices
will inevitably change the values of α and β and rotate our qubit vector around the Bloch Sphere. The take
away message here, however, is that a Hamiltonian with Pauli operators present indicates a physical system
allowing for complete single qubit initialization and manipulation. We therefore have some kind of guide for
what to look for in a physical system for single qubit manipulation.

There are 4 special rotation transformations which we should note as they are common to see in circuit
diagrams and quantum science texts. These are the Pauli X, Y and Z gates as well as the Hadamard gate.
The Pauli gates are simply transformation matrices equivalent to the original Pauli matrices. The Pauli X
gate is like a classical NOT operation and maps the states |0〉 → |1〉 and |1〉 → |0〉. It corresponds to a π
rotation about the X axis on the Bloch sphere. The Pauli Y gate is known as a conjugate bit �ip in that
it maps the states |0〉 → i |1〉 and |1〉 → −i |0〉 and is a π rotation about the Y axis on the Bloch sphere.
The Pauli Z gate is a phase �ip gate in that it leaves the |0〉 state unchanged but |1〉 → − |1〉. This is also
a π rotation about the Z axis on the Bloch sphere. Finally, we have the Hadamard gate which puts the
qubit onto the equator of the Bloch sphere in a superposition state. Speci�cally, |0〉 → 1/

√
2 (|0〉+ |1〉) and

|1〉 → 1/
√

2 (|0〉 − |1〉). This is equivalent to a π rotation about the (1, 0, 1) axis or the 1/
√

2 (~x+ ~z) axis.

The Hadamard transformation matrix is 1√
2

[
1 1
1 −1

]
. These are all single qubit gates.

The next thing we need to �nd are quantum gates which act on two or more qubits. Mathematically, a
quantum gate is simply an operator that acts on the system of qubits. For single qubit manipulations these
transformations acted on a 2 dimensional space. Our Bloch sphere analysis of a general qubit allowed us
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to �nd all the operations we needed. However, extending the Bloch sphere to multiple qubits is impossible.
When we start talking about a larger number of qubits, the dimensionality of the system grows. The
dimension of the system is related to the total number of states realizable. For 2 qubits there are four
possible basis states {00,01,10,11}. The dimensionality grows as 2#qubits so that 500 qubits constitutes a
number of states larger than the hypothesized number of atoms in the universe! Clearly depicting such a
space intuitively is impossible.

a b NOT(a AND b)
0 0 1
0 1 1
1 0 1
1 1 0

Table 1.4.1. NAND Truth Table

As a guide we shall therefore begin with our classical knowledge
of logic gates. The NOT gate is the only classic gate which acts on a
single bit, and as we already showed, this operation is possible with
Pauli rotations. The other common logic gates are the OR, AND,
XOR, NOR, and NAND gates and they all act on 2 input bits and
produce a single output bit. These gates are de�ned by their truth
tables which show all the possible input states and corresponding
output states. The most important of these gates are the NAND
and the NOR gates as it can be proven all possible logic operations
can be reduced to a series of either NAND or NOR gates. That is to say that the NAND or the NOR gate
is a classical universal gate for classical computation. The NAND truth table is shown in Table 1.4.1.

These gates are placed in logic circuits for complex logic analysis. These classical circuits have a number
of properties. First is the fanout/fan-in property, whereby splitting a wire carrying a bit signal we can
instantly create a copy of that bit or combining two wires into one we can perform an AND operation. A
fanout of the input bit before a NAND gate makes it a NOT gate since (a NAND a) = (NOT a) as you can
see in the last row of the truth table. Ancilla bits are also allowed, in which one of the input bits, is set to a
particular value in order to more precisely de�ne the operation of the gate. Bits can be interchanged via a
crossover of the wires, this is identical to a swap operation in which the value of two bits are swapped. And
�nally, we notice that the number of input bits does not equal the number of output bits.

If we now try to �nd equivalent quantum gates we run into some problems. First o�, as stated previously,
but yet to be proven, qubits can not be copied. That is quantum circuits can not fanout/fan-in. There is
nothing suggesting Ancilla bits are not allowed, since we do have the ability to initialize qubits. We should
also be able to crossover/swap qubits without any physical limitation. However, due to the second postulate
of quantum mechanics the evolution, or transformation, of a quantum system must be unitary. This means
that the transformation U must satisfy U∗U = UU∗ = I where I is an identity matrix. Since our gates are
transformations on the system and they must be unitary it means they must be reversible. Classical gates
are not reversible since the output can not always be determined from the input. For the NAND gate, if the
output is zero we do not know the state of the bits before the gate with certainty. This is largely due to the
fact that the number of input bits may be larger than the number of output bits. This will not be possible
for our quantum gates.

Figure 1.4.1. Circuit diagram representation of various quantum gates. a) Hadamard b)
Pauli X c) Pauli Y d) Pauli Z e) Controlled gate, the solid dot represents the control qubit
f) SWAP gate g) CNOT h) To�oli (CCNOT)
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This may make you wonder if quantum gates can do everything classical gates can do. That is to say
is there an equivalent classical universal gate like the NAND gate which is a quantum gate. The answer to
this is yes, and there are a couple of quantum gates which allow for universal classical computation, one of
which is the To�oli gate or the controlled controlled not gate (CCNOT). Before we describe it we will start
with a simple Swap gate.

The quantum Swap gate is probably the simplest operation one can imagine with two qubits. The swap
operation simply interchanges the states of two qubits a, b. The easiest way de�ne the gate is with a truth
table, however we must remember that when we talk about the composite state of the system, the fourth
postulate of quantum mechanics tells us that we must take the tensor product of the two constituent states to
make the full state. That is the quantum state of both qubits being in the zero state, written |00〉 = |0〉⊗|0〉.

Using again |0〉 =

(
0
1

)
and |1〉 =

(
1
0

)
, our truth table would look something like

|00〉 → |00〉 =


0
0
0
1

→


0
0
0
1

 |01〉 → |10〉 =


0
0
1
0

→


0
1
0
0



|10〉 → |01〉 =


0
1
0
0

→


0
0
1
0

 |11〉 → |11〉 =


1
0
0
0

→


1
0
0
0


Our matrix equation for our transformation will look like UtransMinput = Moutput where M is a matrix
composed by the constituent column vectors of possible input/output states in identical order. Solving for
Uswap we get

Uswap


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 =


0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

→ Uswap =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


As we can see the swap operator is Hermitian and unitary as expected.

|ab〉 CNOT(|ab〉)
|00〉 |00〉
|01〉 |01〉
|10〉 |11〉
|11〉 |10〉

UCNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


Table 1.4.2. CNOT Truth Table and Matrix

There are a group of quantum gates called con-
trol gates. A control gate, such as the controlled
NOT gate (CNOT) performs a logic operation �if
and only if, then�. That is a control gate has an
input qubit, the control bit, which controls if a par-
ticular operation will or will not occur on a target
qubit. The truth table and subsequent matrix rep-
resentation for a CNOT gate will therefore look like
that in Table 1.4.2. This can be understood as �if
and only if the control qubit a is 1, then NOT qubit b.

Finally, we have the CCNOT gate, or the To�oli gate which, as stated previously, is a universal gate for
classical computations. That is, with this gate all classical logic operations can be performed. The gate has
2 control qubits, a and b and one target qubit, c. The matrix representation for this 8x8 square matrix is
the direct sum of a 6x6 identity matrix and the the Pauli X gate. The gate simply NOTs the target qubit if
and only if both the control qubits are 1. Mathematically and concisely we can say it maps the state |a, b, c〉
to |a, b, c⊕ a ∗ b〉 where ⊕ de�nes Boolean addition and ∗ de�nes algebraic multiplication.

The question you may be wondering now is, is there a universal quantum gate, or set of quantum gates
which can perform any and all quantum operations? It turns out there are and it can be shown that all
quantum operations can be broken down into series of single qubit rotations and CNOT gates. The math
and proofs are beyond this course, but an accepted universal set of quantum gates can be shown to be the
Hadamard gate, the RZ(π/4) and the CNOT gate. These will not always produce the most e�cient set of
gates to perform a particular operation, but it can reproduce any operation with reasonable e�ciency.

With all of this we now have a guide for what to look for in a physical implementation for quantum
computing. Speci�cally, we need to �nd a system with Pauli operators present which hopefully we can
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control. We also need a physical implementation for a CNOT gate such that if one qubit is in the excited
state it will cause the other qubit to change states. Finally, implementing a functional To�oli gate will
complete the system so that all quantum and classical logical operations can be accomplished. All of this
was found just from considering general QIS arguments and following the DiVincenzo criteria as well as the
quantum postulates.

1.5. Measurement and Entanglement

The nature of what constitutes a �measurement� and the �collapse� of a quantum state has been a
convoluted and intensely debated topic since the development of quantum mechanics. For the purposes
of this course, we are going to side step this conversation and simply de�ne a measurement to be the
intended consequence of interacting a closed quantum system, our qubits, with an external system in a
controlled manner, from which some information about the quantum state of the qubits can be recovered.
A device which performs a �measurement� should ideally be able to be turned �on� and �o�� to control
when a measurement occurs. It should, with high �delity, be able to map the state of the qubit to a
state of measurement outcomes. And the measurement apparatus should perform the measurement quickly
compared to the coherence time of the qubit.

Mathematically, measurement is de�ned by a set of operators {Mm} which act on the state space of the
system. The probability of a measurement result m occurring when the state Ψ is measured upon is

(1.5.1) P (m) = 〈Ψ|M†mMm |Ψ〉

The state of the system after the measurement is

(1.5.2) |Ψ′〉 =
Mm |Ψ〉√
P (m)

and the sum of probabilities of all possible measurement outcomes should be complete, i.e.

(1.5.3)
∑
m

P (m) =
∑
m

〈Ψ|M†mMm |Ψ〉 = 1

This also implies
∑
mM†mMm = I where I is the identity matrix. Intuitively these arguments should make

sense. The �rst equation is simply the general probabilistic interpretation of the wave equation of general
quantum mechanics. The second equation is a consequence of the fact that all measurements will ever reveal
are eigenstates of the measurement operator which acts on the system. While the �nal equation simply
implies that if we add all the possible probabilities of all possible measurement outcomes, we should get
everything! This is also a classical statistical argument.

There are an in�nite set of possible measurement operators, as any set which satisfy the above 3 equations
is a valid set of quantum measurements, however one of the simplest examples is probably the measurement
operators de�ned by

M0 = |0〉 〈0| =
[

0 0
0 1

]
M1 = |1〉 〈1| =

[
1 0
0 0

]
When these operators act on the general state |Ψ〉 = α |0〉+ β |1〉 we get

P0 = 〈Ψ|M†0M0 |Ψ〉 =
[
β α

] [ 0 0
0 1

] [
0 0
0 1

] [
β
α

]
= |α|2

P1 = 〈Ψ|M†1M1 |Ψ〉 =
[
β α

] [ 1 0
0 0

] [
1 0
0 0

] [
β
α

]
= |β|2

These are computational projection measurements which measure if the system is in state 0 or 1 and math-
ematically tell us the probability of each possibility. E�ectively it projects the qubit vector onto the z-axis
of the Bloch sphere. However, if we want to actually measure the value of α and β we need to prepare and
measure |Ψ〉 an in�nite number of times since the measurement outcome m will only ever be 0 or 1. In order
to have full knowledge of a general state |Ψ〉 we need to know α and β. With a single measurement it is
impossible to do this so we are extremely limited in how much information we can get out of a qubit. This
has far reaching consequences which are ampli�ed by the no-cloning theorem which will be discussed in the
next section.
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After such a measurement the state of the system becomes

|ψ0〉 =
M0 |Ψ〉√

P0

=
α

|α|
|0〉 |ψ1〉 =

M1 |Ψ〉√
P1

=
β

|β|
|1〉

and here we more clearly see the projection of the vector into one of the basis states. If we repeat another
measurement after the initial one, assuming zero energy loss, we �nd that

P00 = 1 P11 = 1

P01 = 0 P10 = 0

This probability outcome, as regarded by the Copenhagen interpretation of quantum mechanics, is the
�collapse� of the wave function onto one of the basis states. That is all cross terms and any superposition
appears to vanish.

In practice however, a repeat measurement may not always reproduce the same result. The interaction
between the measuring apparatus and the quantum system may actually cause a physical change in the
state of the system. For example, a photo-detector often absorbs the photon it is trying to measure, at
which point attempting to remeasure the photon is impossible. Measuring the position of a particle often
causes you to move the particle, thereby causing a repeat measurement not to produce an identical result. A
measurement is said to be Quantum Non-Demolition if repeated measurements reproduce identical results.
This can occur if the observable commutes with the complete Hamiltonian of the qubit and the measuring
apparatus system. This however does not mean there is no back-action on the quantum system during
the measurement process. Typically, a QND measurement allows for repeated measurement of one type of
observable with the cost of losing complete knowledge of another type of observable of the system, such as
the phase. As a qualitative example, using a mirror attached to a spring as a measuring device can couple
the re�ection, and therefore presence of the photon, to oscillations in the spring. This way the photon is not
completely destroyed, though its state may be altered by the re�ection in most cases. Nevertheless, QND is
thus something a physical system should strive to achieve when measuring the states of qubits.

Of course there are other possibilities for why repeated measurements do not produce identical results.
Speci�cally, relaxation, decoherenece and other forms of energy loss and natural evolution of a system may
cause di�erences in repeat measurements. Great care must be taken to design systems to minimize these
e�ects, or get around them by performing tasks relatively faster than these e�ects will noticeably change the
system.

There are unique quantum states called entangled states which have interesting measurement results.
An entangled state is a composite state of two or more systems which can not be written as a tensor product
of the original component systems. That is to say |Ψ1,2 entangled〉 6= |Ψ1,2〉 = |Ψ1〉 ⊗ |Ψ2〉. For example take
the state

|Ψentangled〉 =
1√
2

(|00〉+ |11〉)

if we attempt to write this as a product of two states |ψ1〉 = α |0〉 + β |1〉 and |ψ2〉 = γ |0〉 + δ |1〉we �nd
|Ψ12〉 = αγ |00〉+αδ |01〉+βγ |10〉+βδ |11〉. In order for |Ψentangled〉 to equal |Ψ12〉 then αγ = βδ = 1√

2
and

αδ = βγ = 0 must be satis�ed. However, there is no solution for any complex values α, β, γ or δ.
One way to create this state is to perform a Hadamard gate on a 0 qubit and then use that as a control

bit for a CNOT gate with another 0 qubit as follows.

|Ψ1〉 = UHad |0〉 =
1√
2

(|0〉+ |1〉)

|Ψ12〉 = |Ψ1〉 ⊗ |Ψ2〉 =
1√
2

(|0〉+ |1〉)⊗ |0〉 =
1√
2

(|00〉+ |10〉)

|Ψentangled〉 = UCNOT |Ψ12〉 =
1√
2

(|00〉+ |11〉)
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This procedure will also work with the two qubits in the other possible combinations of computational input
state. The results are the 4 maximally entangled states called Bell states given the names below∣∣Φ+

〉
=

1√
2

(|00〉+ |11〉)∣∣Φ−〉 =
1√
2

(|00〉 − |11〉)∣∣Ψ+
〉

=
1√
2

(|01〉+ |10〉)(1.5.4) ∣∣Ψ−〉 =
1√
2

(|01〉 − |10〉)

The most interesting property of such a state is the measurement correlations between the two qubits.
If we use our measurement operators from before on the individual qubits we �nd

P0, first = 〈Ψentangled| (M0 ⊗ I)
†

(M0 ⊗ I) |Ψentangled〉 =
1

2

where P0, first denotes the probability of measuring the �rst qubit in the ground state 0. (M0 ⊗ I) is a
mathematically concise and correct way to apply the measurement operator on only the �rst qubit. After
this measurement the new state of the system will be

|Ψpost〉 =
(M0 ⊗ I) |Ψentangled〉√

P0, first

= |00〉

now if we measure the second qubit to see if it is in the ground state we �nd

P0, second = 〈Ψpost| (I ⊗M0)
†

(I ⊗M0) |Ψpost〉 = 1

where (I ⊗M0) is the mathematically concise and correct way to apply the measurement operator on the
second qubit. The results of this shows that when we measure the �rst qubit we have a 50/50 chance of
�nding it in the ground state. If we do �nd it in the ground state we know with unit certainty that the second
qubit is also in the ground state. If we repeated all the possible measurements we �nd that the measurement
outcomes between the two qubits are always and completely correlated. Such correlations are stronger than
any classically possible correlations and are therefore a new tool we can use in quantum calculations which
is unavailable to classical computations. These entangled states have been used in quantum teleportation,
superdense coding and other interesting protocols in QIS.

These entangled states are at the heart of the great controversy and reluctance for many scientist of the
past to grip the realities of quantum mechanics. A paper written by Einstein and others lead to the EPR
paradox in which it was postulated that quantum mechanics must be incomplete since such states threaten
local causality. However, in 1964 Bell wrote his famous paper outlining the inconsistency of quantum
mechanics with any locally real based hidden variable theory. Bell postulated his famous inequalities in
which the quantum mechanical correlations of entangled states could not be explained classically and gave
experimental predictions which could test if quantum mechanics was complete and correct. The four bell
states in equation 1.5.4 are called maximally entangled states because the correlations between the two
qubits have the greatest possible value. Speci�cally, in a theory built upon Bell's original ideas it can be
show that a hidden variable, locally realistic theory of quantum mechanics will predict a maximum correlation
of outcomes of 2. However, quantum mechanics, as it is, predicts a 2

√
2 correlation between the outcomes

of these states. Since this paper, numerous experiments have been conducted testing this theory and the
overwhelming evidence is in favor of Quantum Mechanics, as it is, being complete and correct.

Luckily for Einstein, perhaps not for us, there has been no way to utilize these entangled states which
allows for faster than light communication. Indeed, though the information between the two entangled qubits
appears to transmit instantaneously, the outcome of the �rst measurement can not be controlled, nor is there
anyway to know if the other qubit has been measured in a faster than light manner.

An analogy for this would be something like having two playing cards, an ace of spades and an ace of
diamonds. A dealer shu�es the cards and places them face down on the table. A person named Alice takes
one of the cards and goes across the room without looking at the card, while a person named Bob holds on
to the other card. Now from Bob's perspective, before he �ips his card over all he can say is that there is a
50% chance he will have the ace of spades and a 50% chance he has the ace of diamonds. Once he �ips his
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card over and makes a �measurement� he determines his card is the ace of spades and immediately knows
that Alice is holding the ace of diamonds. However, even if Bob has �measured� his card, Alice will still
know nothing about her card beyond that 50/50 chance. She can, however know what it is before measuring
it if Bob yells across the room and says he has the ace of spades. However, this form of communication is
classical and is limited to the speed of light. Also, because Bob does not control the shu�ing of the cards,
there is no way for him to communicate a message to Alice faster than light.

This may seem to make this entanglement rather mundane, but the place the analogy breaks down and
where entanglement really is interesting is when an entangled state of two qubits interacts with a third. This
is what is used in the teleportation protocol which will be explained in the next section.

1.6. Energy Relaxation, τ1, and Coherence τ2

The �nal term to discuss in the DiVincenzo criteria is the coherence time. Typically, there are two
parameters which characterize the stability of a qubit τ1 and τ2.

τ1 has many names including the �longitudinal coherence time�, the �spontaneous emission time�, the
�relaxation time� and many others. Qubits are physically two level quantum systems which, when in the
excited state, will naturally decay to the thermal equilibrium ground state. This spontaneous decay is related
to the the quantum system interacting and mixing with its environment, so that each type of qubit will have
its own unique relaxation time. In order to determine the time τ1 a simple experiment can be performed in
which a π pulse is applied to the qubit about an axis on the equator of the Bloch sphere, i.e. the qubit is
brought into the excited state. After the pulse is applied there is a time delay, 4t, before a measurement of
the qubit is performed. By performing many such experiments averaging the results and varying the time
delay, a characteristic exponential decay ∝ e−4t/τ1 will be recovered, from which τ1 can be extracted. The
exact measurement techniques will vary between physical systems due to the nature of the physical system
and a desire for QND measurements and reduction of errors, however the principle and characteristic of the
relaxation time is always the same.

Figure 1.6.1. Ramsey Fringe experiment to determine the
transverse coherence time.

The τ2 time also has many names includ-
ing the �transverse coherence time�, �phase
damping time�, �spin-spin relaxation time� and
many others. Ultimately, this term relates to
how long we can control the phase term of the
qubit. The exact mechanisms which causes ro-
tations of the qubit vector around the z-axis,
i.e controls the phase, are unique to the phys-
ical system, as we shall see in the rest of this
script. However, in general, the qubit mixing
with the environment will cause �uctuations in
our expected rate of rotation.

A simple experiment measuring so called
Ramsey Fringes will determine τ2. The exper-
iment is similar to the experiment for τ1 except
this time instead of a single π pulse we use two
π/2 pulses separated by a delay time. Speci�-
cally, the experiment starts with a π/2 rotation
about the y-axis to bring the qubit to the x-
axis in an equal superposition. Then the qubit
is left alone for a time 4t and will naturally
precess around the z-axis. After this time a
�nal π/2 rotation is performed around the y-
axis and is subsequently measured. Performing
many such experiments averaging and varying
the delay time 4t will produce a dampened
sinusoidal function which oscillates about 0.5
with some characteristic frequency. The exponentially decaying envelope will be proportional to e−4t/τϕ .
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Finally we can use the equation
1

τ2
=

1

2τ1
+

1

τϕ
to determine τ2.

In general both of these processes relate to energy loss and the decay of the Bloch vector components.
In nearly all situations τ1 ≥ τ2 so that the most important stability parameter is τ2 and this represents the
generic �coherence time� of the qubit.

1.7. The No Cloning Theorem and Quantum Teleportation

Before we get into quantum teleportation we will �nally prove the No Cloning Theorem which has been
referenced already a couple of times. Cloning classically is a very simple concept and used in numerous
communication protocols for error correction. A simple fan-out in a circuit is a classical cloning machine in
which the input of a classical bit becomes two outputted and identical bits. Let's see if such an operation is
possible quantum mechanically.

Suppose we have a general unknown qubit, �A�, in state |ΨA〉 = α |0〉 + β |1〉. We wish to put this
through a copying gate which will produce the original qubit A and an identical qubit B. Assuming qubit B
starts in the |0〉 state we mathematically wish to have

Ucopy |ΨA〉 |0B〉 = |ΨA〉 |ΨB=A〉

|ΨA〉 |ΨB=A〉 = (α |0〉+ β |1〉)2
= α2 |00〉+ αβ |01〉+ βα |10〉+ β2 |11〉

Nothing wrong so far. Ucopy should work if |ΨA〉 is in a pure basis state as well that is |ΨA〉 = |0〉 or
|ΨA〉 = |1〉 so that

Ucopy |0A〉 |0B〉 = |0A〉 |0B〉
Ucopy |1A〉 |0B〉 = |1A〉 |1B〉

Since Ucopy in a linear operator we can expand ΨA before applying the operator and �nd

Ucopy |ΨA〉 |0B〉 = Ucopy (α |0〉+ β |1〉) |0B〉 = α |0A〉 |0B〉+ β |1A〉 |1B〉
which is not consistent with our original result α2 |00〉 + αβ |01〉 + βα |10〉 + β2 |11〉. This means that a
general qubit state can not be copied. If the qubit we wish to copy is in a basis state, it can be copied, that
is if α = 1 ∧ β = 0 or β = 1 ∧ α = 0 where ∧ is a logical �AND� then we are �ne. However, if the qubit is in
a general superposition state, we can not copy it.

You may be wondering why we can not just measure qubit A and then initialize both qubits in that
state. However, you are forgetting that a single measurement of a qubit does not reveal the values of α and
β only the basis state it will be in now. Since we can not determine exactly α and β without a large number
of measurement results on identically prepared qubits and we originally do not know the value of α and
β of the qubit we wish to copy, we can not prepare the necessary qubits for measurement and subsequent
copying! This is very much a qualitative restatement of the No-Cloning theorem.

There is much to be said about this theorem. First it can be seen as an indirect result of the uncertainty
principle of quantum mechanics. If we could clone unknown quantum states, then we could measure the
attributes of such a state/system with in�nite precision, thus violating the uncertainty principle. This
theorem also prevents superluminal communication using entangled states of qubits. Though, it does not
prevent superluminal communication in general, but only for this particular case. Quantum Cryptography
is very much based on the validity of this theorem since it will prevent the man-in the middle attack where
the eavesdropper will no longer be able to �copy� the key for himself and then allow it to continue down
the communication line. As previously stated, this does not allow for classical forms of error correcting,
where typically a bit is copied multiple times and each is used in identical operations and the majority
outcome is taken as the result. Finally, it should be noted that it is possible to imperfectly clone unknown
quantum states with various limitations and constraints. Imperfect cloning does have applications including
possibilities for quantum man in the middle attacks. Also, this theorem does not prevent quantum error
correction, it simply requires non-classical engineering to do and in 1995 Shor and Steane created the �rst
quantum error correcting algorithms which circumvent the problems caused by this theorem.

Now that we have �nally proved the no-cloning theorem, we might wonder how to get the information
stored in a qubit at location A, to another location, B. The no-cloning theorem does not allow us to clone the
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qubit at point A to get all the needed information about its state and relay that to location B to initialize
a qubit there. For that matter, how will we ever be able to share quantum information in a network? Just
about everything we would try classically will not work! In 1993 a solution by C. Bennet and colleagues
was developed in which maximally entangled qubits could be used along with some classical information to
e�ectively �teleport� the unknown state of a qubit between two locations.

Before we describe the procedure, I would like to go back to the analogy previously stated regarding
quantum entanglement. I stated that an interesting aspect of entanglement was the correlated outcomes
of measurement results between two qubits separated by an arbitrary distance. I also stated that this was
similar to the measurement results of having two playing cards shu�ed face down and measuring the �rst
one. The analogy breaks down, however, in that classically, we know that the cards where their original
values before we �ipped them over, and it was simply our inability to follow the shu�ing that did not allow
us to predict with certainty the result of �ipping the �rst card. Quantum mechanically speaking we have to
abandon this idea, or at least the idea of local realism, to interpret this entanglement. Speci�cally, we must
abandon the notion that the cards had their values before they were �ipped as we will see why in a moment.

Figure 1.7.1. Teleportation Protocol Circuit Diagram. Part 1 creates the entanglement of
the messenger qubit, b, with the receiver qubit c. Part 2 is the interaction of the messenger
qubit and the transmission qubit, a, and full state measurements of the two qubits afterward.
Part 3 is the classical transfer of information about the measured state of qubits a and b
with the conditional Pauli gates to act on qubit c if the corresponding qubit was found in
the excited state.

In the standard quantum teleportation protocol we would like to transmit qubit a at location A to loca-
tion B. To perform the operation we need three qubits, a, the �transmission� qubit , qubit b the �messenger�
and qubit c the �receiver� qubit. First, qubits b and c are maximally entangled and qubit b is sent to location
A while qubit c is sent to location B. At location A we perform a CNOT(a, b) followed by a Hadamard gate
on a. After, a projection measurement on both qubit a and b is performed collapsing their states. When this
happens, information about qubit a is �teleported� to qubit c. At this point the results of the measurements
at location A must be relayed to location B, where then qubit c can be rotated appropriately to reconstruct
c into a. In the process qubit a is destroyed, so that a copy has not been created, thereby circumventing the
no-cloning theorem. It should be noted that qubit b never physically leaves location A and for all practical
de�nitions �teleports� information about qubit a to qubit c.

Let's look at the math to better understand this. Qubit a, the qubit with the information we wish
to send is in the unknown state |Ψa〉 = α |0a〉 + β |1a〉 while qubit b and c are prepared in the Bell state
1√
2

(|0b0c〉+ |1b1c〉). The entire system is therefore in the state

∣∣Ψ∑〉 = |Ψa〉 |Ψbc〉 =
1√
2

(α |000〉+ α |011〉+ β |100〉+ β |111〉)
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where |abc〉 represents the composite basis state of qubit a, b and c respectively. When we apply the CNOT
to the �rst two qubits, we �ip qubit b if a is 1 so we get

UCNOT(a,b)

∣∣Ψ∑〉 =
1√
2

(α |000〉+ α |011〉+ β |110〉+ β |101〉)

then we apply the Hadamard to a so that |0a〉 → 1√
2

(|0a〉+ |1a〉) and |1a〉 → 1√
2

(|0a〉 − |1a〉) and the system
becomes

UHad(a)UCNOT(a,b)

∣∣Ψ∑〉 =
1

2
(α |000〉+ α |100〉+ α |011〉+ α |111〉

+β |010〉 − β |110〉+ β |001〉 − β |101〉)
we can rewrite this in a more suggestive form based on the four possible measurement outcomes of qubits a
and b. Speci�cally,

UHad(a)UCNOT(a,b)

∣∣Ψ∑〉 =
1

2



|0a0b〉 (α |0c〉+ β |1c〉) +

|1a0b〉 (α |0c〉 − β |1c〉) +

|0a1b〉 (β |0c〉+ α |1c〉) +

|1a1b〉 (β |0c〉 − α |1c〉)


We can notice that now |Ψc〉 which are the states in parenthesis look nearly identical to |Ψa〉, but sometimes
rotated or �ipped. We could rewrite this as

|ΨTeleport〉 = UHad(a)UCNOT(a,b)

∣∣Ψ∑〉 =
1

2



|0a0b〉 σ̂I |Ψc=a〉 +

|1a0b〉 σ̂Z |Ψc=a〉 +

|0a1b〉 σ̂X |Ψc=a〉 +

|1a1b〉 σ̂XZ |Ψc=a〉


and we see clearly that the state of qubit c depends on the measurement outcome of a and b and is di�erent
from the original state of a by a rotation or two. Once the measurement of qubits a and b is made at location
A, this information is relayed to location B classically, and then the necessary rotations to change qubit c
into the original state of qubit a can be performed. Thereby teleporting the information between the two
locations.

Now the place where the card analogy breaks down is that the playing cards do not interact with each
other. That is to say, if we put a third card next to one of the original face down cards, it would not cause
that card to change nor the card on the other side of the room to change as well. However, this is what
actually happens with quantum systems. It is as if there is a quantum channel of information connecting
the entangled qubits which allows the transmission of information between them and causes �spooky action
at a distance�. Unfortunately, this quantum channel, for the time being, seems to be outside of our ability
to control exactly how the transfer of our desired information will happen. However, we can clearly utilize it
for transferring quantum information from one location to another, with the help of some means of classical
communication.

The term teleportation used in this context is from that fact that information about qubit a is transmitted
to qubit c through qubit b, without qubit b going back to the location of qubit c and that qubit c and qubit
a never directly interact. It is not necessarily the same concept of teleportation in Sci-Fi where matter is
relocated from one place to another. However, it is without a doubt similar in character. Possibly in the
future, entanglement and a deeper understanding of this hidden quantum channel might remove some of the
mystery of such a teleportation, but until then, this is probably an adequate use of the term.

1.8. Summary

We have now covered all the basics of what we need to cover from general QIS to begin looking for
physical systems which can realize full and general quantum information processing. The rest of this course
will cover the various �elds of physical systems which have already been able to realize some or even all of
what we have previously talked about. These systems include Nuclear Magnetic Resonance, photon based
systems, superconducting circuits, trapped ions and quantum dots. Superconducting circuits will be used as
the example physical system for going into greater detail about how these general qubits are created, how
qubit manipulation and gates are implemented as well as how measurements are performed. This is done
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simply because most of the �elds have a large overlap in details such that studying one of them in detail
actually gives you a lot of knowledge and skills easily transferable to the other �elds. Also, there is not
enough time in one course to cover extensively each �eld as each �eld could easily warrant its own unique
course.



CHAPTER 2

Superconducting Circuits

2.1. The Harmonic Oscillating Circuit

How can we make a circuit which can be used for quantum information processing? If we recall from any
basic Electromagnetism course the parallel LRC circuit will act in many ways like a mechanical harmonic
oscillator. We also know from basic quantum mechanics that the mechanical harmonic oscillator will have
quantized energy levels. This suggests that an LRC circuit might be able to be used for quantum information
processing. However, we need to �gure out if the electric circuit will also quantize as the mechanical system
does and determine the relevant parameters of the system.

Figure 2.1.1. A simple LC circuit

Our analysis starts with what we know classi-
cally about the circuit. For simplicity we will ignore
the resistor and consider its e�ects on the system
afterward. Thus, the basic LC circuit is drawn in
Figure 2.1.1. The basic circuit equations are

Φ = LI VL = −LdI
dt

(2.1.1)

Q = CVC(2.1.2)

Emag =
LI2

2
Eelec =

CV 2

2
(2.1.3)

where Φ is the magnetic �ux in the inductor, L
the inductance, I the current, and Q the total
charge on the capacitor. Also, C is the capacitance,
VL,C the voltage across the inductor/capacitor and

Emag,elec is the energy stored in the inductor and

capacitor respectively.
We can write the classic Hamiltonian as

(2.1.4) Hcl,LC =
CV 2

2
+
LI2

2
=
Q2

2C
+

Φ2

2L

where we have chosen to write the Hamiltonian in terms of the charge and magnetic �ux.
Now we are stuck since we do not know the quantum operators for Q and Φ. For inspiration, let us turn

to the mechanical harmonic oscillator. Recall the Hamiltonian for the classic mechanical harmonic oscillator,
for example a mass on a spring, is

(2.1.5) Hcl,mech =
p2

2m
+
kx2

2

where p is the momentum of the mass m, k the spring constant and x is the displacement of the mass from
equilibrium. Comparing these two Hamiltonians gives us the idea to think of Q as p and x as Φ. As further
motivation we recall that p and x satisfy the canonical equations of motion

(2.1.6)
δH

δp
= ẋ

δH

δx
= −ṗ

and we see that Q and Φ also satisfy these equations identically

(2.1.7)
δH

δΦ
=

Φ

L
= I = Q̇

δH

δQ
=
Q

C
= V = −Lİ = −Φ̇

17
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Classic

Mechanical

Classic

Electronic

Quantum

Mechanical

Quantum

Electronic

Displacement x Φ x̂ Φ̂

Flow p Q p̂ = −i~ d
dx

Q̂ = −i~ d
dΦ

Force

Proportionality
m C m C

Restoring

Proportionality
k 1

L
k 1

L

Resonant Frequency ω =
√

k
m

ω = 1√
LC

ω =
√

k
m

ω = 1√
LC

Commutation

Relations
- - [x̂, p̂] = i~

[
Φ̂, Q̂

]
= i~

Table 2.1.1. Relationship of variables between the mechanical and electronic harmonic
oscillator as well as classically and quantum mechanically.

Let us assume this relationship is true for all the variables of these systems and then we can make
the jump from classical to quantum quite easily as shown in Table 2.1.1. We may now write the quantum
Hamiltonian of the LC circuit as

(2.1.8) Hqm,LC =
Q̂2

2C
+

Φ̂2

2L
= − ~2

2C

δ2

δΦ2
+

1

2L
Φ2

This has all the properties of the mechanical harmonic oscillator. Speci�cally, the energy eigenvalues
and eigenvectors are characterized by an integer n such that

En,LC = ~ω
(
n+

1

2

)
with a Dirac notation of |n〉 to de�ne the basis state of the system.

We can take this a step further and put this Hamiltonian into second quantization form. Recalling the
creation and annihilation operators for the mechanical harmonic oscillator were âmec = 1√

2m~ω (imωx̂+ p̂)1,

we can immediately write the corresponding operators using Table 2.1.1. It is convention to write these

operators in terms of the characteristic impedance of the circuit ZC =
√

L
C so the equations are

(2.1.9)

âLC = 1√
2~ZC

(
ZCQ̂+ iΦ̂

)
anhiliation

â†LC = 1√
2~ZC

(
ZCQ̂− iΦ̂

)
creation

We can now rewrite the Hamiltonian simply as

(2.1.10) H = ~ω(â†LCâLC +
1

2
)

If the system is in state |n〉 then

a† |n〉 =
√
n+ 1 |n+ 1〉 a|n >=

√
n |n− 1〉 a†a |n〉 = n |n〉

and we can also recognize a†a as the number operator n̂. The commutation relation between these operators
is exactly as that for the mechanical harmonic oscillator,

[
a, a†

]
= 1.

You may have asked yourself, what would happen if we chose the variables di�erently so that Q was x
and p was Φ? Since these variables, Q and Φ, are canonical variables, then it should not be too surprising
to realize that the analysis would have taken a slightly di�erent path, but produced identical results. This
is equivalent to the concept of analyzing a mechanical harmonic oscillator system in either the position or
momentum basis. In this other analytical path Table 2.1.1 would look di�erent, for example m = L and

1Note that in most texts the convention is to make the momentum term the imaginary term in the factoring of the
Hamiltonian to de�ne the creation and annihilation operators, however in principle this assignment is arbitrary. For completeness
with the results we have used thus far in this text, the authors have chosen to de�ne the position component to be the imaginary
term, breaking with convention.
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k = 1
C etc., but if you test for yourself you will arrive at identical results. The method used in this text

follows convention, but if it seems counter-intuitive to you there should be no hesitation in analyzing in this
other representation. Though care should be taken to explicitly state your chosen basis.

Finally, it is also possible to have used the variables V and I to arrive at nearly the same conclusions.
The above analysis would be identical with the substitutions

(2.1.11) V̂ =
Q̂

C
Î =

Φ̂

L

2.2. Controlling Our Quantum Circuits

So what if we had not neglected a resistance R in the circuit? For simplicity in our analysis let us put
a resistor in parallel with our inductor and capacitor as in Figure 2.2.1 and ignore any incoming current.
Kircho�'s circuit laws tell us the net current at the junction is zero, so IL = IR + IC and that the voltage
across each element is equal. Noting that IR = V

R , IC = C dV
dt and V = −LdILdt we can write a dynamic

equation for the current through the inductor as

(2.2.1) CL
d2

dt
IL +

L

R

d

dt
IL + IL = 0

This equation has a general solution of

(2.2.2) I(t)L = e−βt
[
A1e

t(β2−ω2
0)

1/2

+A2e
−t(β2−ω2

0)
1/2]

where β = 1
2RC and ω0 = 1√

LC
. We can see the general solution is sinusoidal in nature with an amplitude

that exponentially decays proportional to the damping constant β. The characteristic amplitude decay time
for this circuit is then de�ned as

(2.2.3) τamp = 2RC

Figure 2.2.1. Parallel LRC circuit

This has the obvious consequence that if we
put energy into our oscillator it will dissi-
pate over time. This may cause problems
if, for example, we attempt to set our qubit
into an excited state to be used later, but we
wait too long and the energy has already dis-
sipated. A simple solution is to decrease the
resistance in the circuit to give a longer de-
cay time. Superconductors have extremely
small resistance, thus one way to increase our
control over the circuit is to cool it down into
the superconducting regime for the compo-
nent material of the circuit. (if we increase
R then τamp gets bigger so something has to
be wrong with what i just said)

Of course in order for our circuit to be useful we need to couple it to the environment so that we
may change and measure the system at our convenience. This coupling adds increased parasitic e�ects on
the harmonic oscillator including increased dissipation. In principal one may model the environment as a
frequency dependent element of impedance in parallel with the LC circuit and using circuit analysis show
that this has the added e�ect of shifting the resonant frequency of the oscillator. It will also change the
net resistance and capacitance of the harmonic oscillator e�ectively altering the decay constant. With this
analysis we would have that C∑ = Cint + Cext and

1
R∑ = 1

Rint
+ 1

Rext
and τ∑ = 2C∑R∑.

If we were to add as an input a sinusoidal driving current of frequency, ν, we could plot a spectral
response of the current through the inductor and �nd a Lorentzian curve about the resonant frequency of
the system. The equation would be

(2.2.4) IL(ν) = (Imax)
2 δν

π
[
(ν − νr)

2
+ δν

]
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where δν is the full width half-maximum of the curve and νr is the resonant frequency. We could also de�ne
a quality factor Q as

(2.2.5) Q =
νr

δν
=

input power

dissipated power

The full width half maximum, δν is related to the dissipation in the system and thus correlated with the
quality factor. Ideally, for measurement and control of the system we need high quality factors. This again
shows that we need minimal resistance in the circuit for practical use.

Figure 2.2.2. Two simple coupling schemes using inductors and capacitors

There are various engineering schemes for decoupling the harmonic oscillating circuit from the environ-
ment, the two most simplistic schemes involve physically separating the oscillator circuit and the external
circuit via either a capacitor or an inductor. There is a catch 22, however, when designing the decoupling
because the coupling itself is also the mechanism for control of the oscillator. Obviously, if you completely
decouple the circuits by perhaps making the coupling capacitor separation in�nite, than you no longer have
any control of the system. Thus, some happy middle ground must be used.

Another important aspect of controlling our system for quantum computation is knowledge and control
of the state of the system. The computational basis of a qubit is two levels and we need absolute control over
which level the system is in. Using either Fermi-Dirac, Bose-Einstein or Maxwell-Boltzmann distribution
functions, depending on the nature of the system, we know the probability of a certain energy level being
occupied is dependent on temperature. In the limit T → 0 the probability the system is in the ground state
approaches unity. In general we need to make sure that the energy gap between the ground state and the
�rst excited state is much larger than the thermal energy of the system. This will ensure that the system
does not enter the �rst excited state without our deliberate desire.

The energy spectrum of super-conductors is in many ways ideal for these considerations. When a metal
is at room temperature the energy spectrum for the valence electrons is a continuum. However, as it cools
and reaches a critical temperature, these electrons begin to bind together into Cooper-pairs. The bound
state is between two opposite spin electrons with a typical binding energy, ∆s, on the order of a meV. The
pair form a Bosonic state with a spin and angular momentum of zero. The charge is of course 2e. The colder
the metal gets the more binding occurs until nearly all of the electrons have formed cooper-pairs. Since they

Figure 2.2.3. Energy spectra of metal room temperature, at superconducting temperature
and engineered to have a split in the ground state energy level.
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are bosons they can all simultaneously occupy the same state and at su�ciently low temperature they will
all reach the ground state. Through clever engineering one can in principle design a system which will split
this energy level, into two energy levels and we will then have our qubit. This process would be akin to
hyper�ne splitting of energy states in an atom when it is in the presence of an external magnetic �eld. This
is depicted in Figure 2.2.3.

It should be noted that the analysis of this section has been purely classical and one might wonder if such
an analysis is applicable to a quantum system. Indeed this analysis is not complete, however, qualitatively
and in many respects quantitatively this analysis is accurate. If the reader is interested in a more complete
and quantum description of dissipation in harmonic oscillators this can often be found in quantum optics
textbooks. The topic is closely related to the master equations and non-unitary Hamiltonian analysis.

In conclusion, our need to control the harmonic oscillator's dissipation time, its energy state, as well
as the need for a computational basis, has lead us to the use of superconducting circuits. As a �nal note,
typical temperatures for actual quantum circuits are on the order of 10−2 K with quality factors on the order
of 104. This is in large part due to the limitation on the size of inductors and capacitors which, practically
speaking get only as small as 1nH and 1 pF respectively. This leads to a typical resonant frequency on the
order of 5 GHz.

2.3. Linear vs. Nonlinear Oscillators (Josephson Junction)

Figure 2.3.1. a)Harmonic energy spectrum b)An-harmonic energy spectrum

Given that we now know the superconducting LC circuit will have discrete energy levels as En,LC =
~ω
(
n+ 1

2

)
, we could use this to construct a qubit basis using any two levels of the system. We could also in

principle create superposition states in the magnetic �ux or the charge basis. However, in practice there is
one glaring problem when we look at the energy spectrum. Speci�cally, all of the energy levels are separated
by an identical amount of energy. When attempting to induce a transition from the ground state to the �rst
excited state, we may actually induce a transition from the �rst excited state to the second, or a transition
from any two states in the system. This will be a problem for any linear oscillator. Ideally we need a circuit
element to be nonlinear to introduce some an-harmony to the energy spectrum.

One solution to this problem has been the Josephson Junction, named after the British physicist who
�rst derived the theoretical ground work for such a junction. The junction itself is nothing more than
two superconducting materials separated by a small insulator as depicted in Figure 2.3.2. What Josephson
discovered is that the Cooper-pairs discussed in the previous section, will tunnel through the insulating
barrier and cause some unique e�ects. The most useful aspect is that it will also act like a non-linear
inducting element.

Josephson derived the following properties of such a junction. First, the current through the junction
will be

(2.3.1) IJ = IC sin δ = IC sin

(
2πΦ(t)

Φ0

)
where IC is called the critical current and it is a phenomenological property of the junction.

(2.3.2) δ = δ2 − δ1 =
2πΦ(t)

Φ0



2.3. LINEAR VS. NONLINEAR OSCILLATORS (JOSEPHSON JUNCTION) 22

Figure 2.3.2. A Josephson Junction

is the di�erence in the phase angles of the quantum state of the systems on either side of the junction. Φ(t)
is the magnetic �ux through the junction, while Φ0 is the Flux quantum which has a value of

(2.3.3) Φ0 =
h

2e

and is the quantization unit of a magnetic �ux �eld.
He also derived the voltage across the junction as

(2.3.4) VJ =
Φ0

2π

dδ

dt
=
dΦ

dt

Now using equation 2.3.1 we �nd that

(2.3.5)
dI

dt
= IC cos δ

dδ

dt
→ dδ

dt
=
dI

dt

1

IC cos δ

so that

(2.3.6) VJ =
Φ0

2πIC cos δ

dI

dt

which looks like an induction equation V = −LdIdt . This derives for us the so called Josephson inductance of
the junction

(2.3.7) LJ =
Φ0

2πIC

1

cos δ
= LJ0

1

cos δ

We can see that this inductance is nonlinear. Exactly what we were looking for.
The energy of this non-linear inductor is

(2.3.8) EJ =

ˆ
V I dt =

ICΦ0

2π
cos δ = EJ0 cos δ

A �nal important property of the Josephson Junction is that it is non-dissipative, which means it has no
internal resistance. This makes it an ideal candidate as an element in a superconducting quantum circuit.

Figure 2.3.3 shows three di�erent styles of depicting the Josephson Junction in a circuit. It is important
to note that the Josephson Junction also has an internal capacitance which can be considered to be in parallel
with the tunneling/inductive part.

Figure 2.3.3. Common ways of depicting a Josephson Junction in a circuit diagrams.
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Figure 2.4.1. Three Di�erent types of qubits which use Josephson Junctions

2.4. The Cooper-Pair Box Charge Qubit

When trying to construct a functioning quantum mechanical electronic circuit for quantum information
processing we started with our classical understanding of a parallel RLC circuits. We were inspired by the the
analogy between the electronic and mechanical harmonic oscillators to derive the quantum Hamiltonian for
an LC circuit. Upon deriving the energy levels for such a system we realized a problem will occur controlling
the transitions between two states because the energy levels are all separated by an identical amounts of
energy. We then learned about Josephson Junctions as a solution to this problem because they act like a
non-linear inductor. Now we need to see how this new element alters the Hamiltonian and solve for the new
energy levels of this system.

Figure 2.4.2. A Cooper-Pair Box

There are a variety of ways we could construct the
circuit which will have varying paths of analysis and
usage. The three common setups either use a coax line,
a capacitor or an inductor to couple an external voltage
to the Josephson Junction as depicted in Figure 2.4.1.
The coax-line creates a natural phase basis for a qubit, a
capacitor forms a natural charge basis, and the inductor
forms a natural �ux basis. Each way has its merits and
demerits, but for the purposes of this course and due
to its current popularity we will focus on the capacitor
setup which is called a Cooper-Pair Box.

Figure 2.4.2 shows a simple Josephson Junction connected to an external voltage source through a gate
capacitor. Our analysis will begin conceptually from the point of view of the �island� also depicted in the
�gure. This island is isolated from the outside world via the capacitors dielectric material and the Josephson
Junction insulating gap. Initially, when there is no gate voltage, the island is charge neutral. When the
gate voltage is turned on the charges will begin to polarize as we would expect. We can imagine surface
charges being induced on the island to try and cancel the external potential, internally. However, these net
charges are only a result of the already present charges on the island rearranging themselves according to the
externally applied force from the gate voltage. No new charges have been introduced to the island. There
is however, a bridge onto the island across the Josephson Junction. As the island polarization increases,
Cooper-pairs will being tunneling across the junction to try to re-neutralize the polarization. This causes an
actual increase in the number of charges on the island. If we continue to increase the gate voltage, Cooper-
pairs will continue to tunnel onto the island. If we remove the voltage, these extra Cooper-pair charges will
tunnel back o� of the island returning the system to its original state.

From this conception we can envision a qubit as the presence or absence of extra Cooper-pairs on the
island from the original number. In the most simplistic case, the ground state would be no extra Cooper-pairs
on the island, while the �rst excited state is exactly one extra Cooper-pair on the island. A superposition
state would occur when there is some non-unit probability, α, of a single Cooper-pair tunneling through
the Josephson Junction. Now that we have an idea of what we might be looking for, we can play with the
Hamiltonian to try and derive these results quantitatively.
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The Hamiltonian is as it was before a sum of the total energy being stored in the electric and magnetic
�elds in the circuit elements.

(2.4.1) HJCg
= Hel +Hmag

There are electric �elds being stored in the capacitors of the system so that Hel =
Q̂2∑
2C∑ , which is identical

to before except now we have more than one capacitor as well as extra Cooper-pair charges to account for.
Our envisioned basis and the relevant dynamics of our circuit are related to the extra number of Cooper-pair
charges on the island. Therefore the total charge we are concerned with is the di�erence in Cooper-pair
charges, which have tunneled onto the island, and the e�ective number of charges which have built up on
the gate capacitor. Quantitatively Q∑ = QCP −QG.

C∑ is the net capacitance of the island and in this case would be C∑ = CG +CJ +Cext. From the point
of view of the island the gate capacitor and the junction capacitor are in parallel so their net capacitance
is additive and we have added an extra term Cext to represent unforeseen external capacitance between this
island and the environment.

Since we were looking for a basis in terms of Cooper-pair occupation on the island, we should change
from a generic charge Q̂ to a number representation basis N̂CP of Cooper-pairs. The number of cooper-pairs
on the island is discrete and is 2eN̂CP = Q̂CP. Remember a Cooper-pair has a net charge of 2e since it
is a pair of electrons. We can normalize the capacitor charge as also being some number of Cooper-pair
charges such that QG = 2eNG = CGVG and we note that this number of charges is continuous compared
to the Cooper-pair particle number. That is to say that VG can in principle be adjusted along a continuous
spectrum from −∞ to ∞. We can therefore write

(2.4.2) Hel =
4e2

2C∑
(
N̂CP −NG

)2

The constant term in front is called the charging energy

(2.4.3) EC =
4e2

2C∑
.

The qualitative and quantitative analysis used up to this point has been classical, and again the reader
should be cautioned that we have not fully pictured nor properly derived these results. However, the resulting
Hamiltonian is in fact the correct Hamiltonian which would be derived from stricter quantum considerations.
Of course, however, we have not considered dissipation or other forms of interaction dynamics. We will
consider these in some detail later. Our intention at this point is to understand the principle characteristics
and dynamics of this new system.

This purely electrical Hamiltonian is graphed in Figure 2.4.3. As we can see this part of the Hamiltonian
is proportional to N2

G and is therefore parabolic in nature. However, there will be a parabola centered at
every discrete value of NCP. This creates a band like structure of the energy levels which are depicted with
di�erent colors in the �gure. As a side note, this spectrum is identical to the free electron spectrum in a one
dimensional lattice.

This is of course only half the picture since we have yet to account for the magnetic part of the Hamil-
tonian. As we found before, the Josephson Junction acts like an inductor and will be storing energy in its
magnetic �eld. The energy in the junction will be

(2.4.4) Hmag = −EJ0
cos δ̂

so the �nal Hamiltonian becomes

(2.4.5) HJCG = EC

(
N̂CP −NG

)2

− EJ0 cos δ̂

It would be ideal to put this equation in terms of one of the operators and use that operator as a basis

state. Since N̂CP = Q̂
2e and δ̂ = 4πehΦ̂ while

[
Φ̂, Q̂

]
= i~ we �nd upon substitution that

[
δ̂, N̂CP

]
= i and

therefore, to no surprise, these are conjugate variables. We expect the number operator N̂CPto return the
number of Cooper-pairs on the island in a particular state, using Dirac notation we would have N̂CP |N〉 =
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Figure 2.4.3. The electric part of the Hamiltonian, Hel, for a Cooper-pair Box

nCP |N〉. As expected these states satisfy the relations

N̂ |N〉 = n |N〉∑
N

|N〉 〈N | = I

〈M | N〉 = δmn

where I is the identity. In this way we could use either of these variables as a convenient notation for the
basis states.

Being conjugate variables we can transform between the charge number basis and the phase basis by

(2.4.6) |δ〉 =
1√
2π

∑
N

eiNδ |N〉

and we �nd that

(2.4.7) e±iδ |N〉 = |N ± 1〉

We can rewrite equation 2.4.4 using the Euler relation as Hmag = −EJ0

2

(
eiδ + e−iδ

)
in order to use 2.4.7

and �nally write the Hamiltonian completely in the number basis as

(2.4.8) ĤJCGNbasis
=
∑
N

[
EC

(
N̂CP −NG

)2

|N〉 〈N | − EJ0

2
(|N〉 〈N + 1|+ |N + 1〉 〈N |)

]
Of course if we wanted we could instead write this in the phase basis as

(2.4.9) ĤJCGδbasis
= EC

(
−i d
dδ
−NG

)2

− EJ0
cos δ̂

Now that we have a �nal Hamiltonian, it is a mathematical activity to �nd the Eigenvalues and Eigenvec-
tors of the system. However, this is not very instructive for our concerns. What is constructive is concerning
ourselves with a two-level approximation since this will show the relevant characteristics for our qubit. In
this limit our Hamiltonian becomes

ĤJCGNbasis
= ECN

2
G |0〉 〈0|+ EC (1−NG)

2 |1〉 〈1| − EJ0

2
(|0〉 〈1|+ |1〉 〈0|+ |1〉 〈0|+ |0〉 〈1|)

the result can be put in terms of the Pauli-spin matrices,

(2.4.10) ĤJCGNbasis
= −EC

2
(1− 2NG) σ̂z −

EJ0

2
σ̂x

From the secular equation we can solve for the energy eigenvalues and �nd

(2.4.11) E± = ±1

2

√
E2
C + E2

J0
+ 4NGE2

C (NG − 1)
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This distribution is plotted in Figure 2.4.4a and it should be quite clear that the magnetic term of the
Hamiltonian, which is proportional to the Josephson energy, e�ectively creates energy gaps at the degen-
eracy points. In Figure 2.4.4b we see the gap size between the ground state and the �rst excited stated is
approximately the Josephson Energy. However, the gap size decreases between increasing energy levels. This
is exactly what we wanted since this will help us control transitions assuming we can also get EJ0

� kBT .
We have e�ectively created a tunable atom!

(a) (b)

Figure 2.4.4. Energy eigenstates of a Cooper-Pair Box in (A) the two-level approximation
and (B) the general case.

Figure 2.4.5. Energy spectrum and wave functions for a Cooper-Pair Box with EJ0
� EC.

The left side graphs correspond to the case Ng = 0, while the right side are for Ng = 0.5.
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Figure 2.4.6. Energy spectrum and wave functions for a Cooper-Pair Box with EJ0
� EC.

The left side graphs correspond to the case Ng = 0, while the right side are for Ng = 0.5.

For a deeper understanding we plot the wave function and the square of the wave function in the number
and phase basis as well as the energy levels for the two cases EJ0

� EC and EJ0
u EC.

Figure 2.4.5 shows the case for EJ0
� EC. For NG = 0 we see the wave function in the number basis

are in coherent states, either |0〉 or |1〉. However if NG = 0.5 we �nd that the system is in an entangled state
either symmetrically or anti-symmetrically depending on the energy level of the system. One can also see
the conjugate pair relationship between the number basis and the phase basis by noting that a near perfect
coherent state in the number basis corresponds to a completely �at and unknown phase basis state.

Figure 2.4.6 is the case for EJ0
u EC. We see the picture becomes a bit more complicated now as there

are no de�nite coherent states. Even when NG = 0 the wave function is a linear combination of the system
with various amounts of Cooper-Pairs on the island. Though, the amplitudes do fall o� quickly.

Finally, the energy levels in the limit EJ0
� EC are plotted in Figure 2.4.7. As it turns out, this case

is the most ideal for the lab. This is due to the extremely �at nature of the bottom two energy levels
which creates a system highly resilient to noise. The graphs which we have plotted in this text are the
idealized, theoretical case which do not take into account a lot of real world terms such as noise, de-phasing,
measurement uncertainty, and dissipation. In the lab trying to reproduce these energy level graphs would
result in �uctuations of the general shape and at points near the energy gap, for example in Figure 2.4.5,
it would be nearly impossible to tell which level the system is in. When the levels are �at it becomes much
more di�cult for these �uctuations to cause overlap and therefore one can with greater certainty determine
the level of the system. This is just a quick example of one feature which make the large Josephson energy
limit ideal, there are however others which we will not discuss here.

2.5. Tuning the Junction

Though it has already been implicitly stated that we can tune this qubit to nearly our exact speci�cations
within the limits of current technology, it will not be a waste to reemphasize this capability. Again looking
at the Hamiltonian and the eigenenergies of the two level system, we recognize the relevant parameters are
the charging energy EC, the number of gate charges NG and the Josephson Energy EJ.
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Figure 2.4.7. Energy spectrum for a Cooper-Pair Box with EJ0
� EC

The �rst two terms are relatively easy to control. The charging energy in equation 2.4.3 is inversely
proportional to the net capacitance on the island EC. Our desired regime for the qubit was in the limit
EJ0 � EC which can be obtained by decreasing the value of EC. Without in�uencing the relative dynamics
of our qubit, we may simply add more capacitors in parallel with Josephson Junction, thereby increasing the
net capacitance of the island. The gate charge NG is directly proportional to the externally applied voltage,
which of course we control.

Figure 2.5.1. Transmon circuit diagram

The Josephson energy, however, is a bit more di�cult to
understand our control over. The term itself is proportional
to a constant dependent on the critical current, and the cosine
of the phase di�erence across the junction. The critical cur-
rent is directly proportional to the ease at which Coop-pairs
can tunnel through the junction. Therefore, this value can be
controlled in fabrication by the surface area and the thickness
of the tunnel. The larger the surface area, and the thinner the
insulting layer, the larger the critical current can be. These
parameters are tunable to our speci�cations within the limit of
fabrication techniques. However, once the junction is set, they
can not be adjusted.

The phase di�erence is dependent on the magnetic �ux through the junction which is in principle a
real time quantity we could adjust by applying an external magnetic �eld. Unfortunately, the necessary
magnetic �elds required to have an e�ect on a single junction are much larger than is practical. However,
clever engineering can alleviate this problem. Without formal proof, we state that two Josephson Junctions
in parallel e�ectively change the dependence of the cosine term in the Josephson energy from the magnetic
�ux through the individual junction, to the magnetic �ux of the loop of the junctions. Since the loop has a
much larger area than the individual junctions, the necessary magnetic �eld is much smaller to control the
cosine parameter. We call this type of circuit a Transmon and it is depicted in Figure 2.5.1.The Transmon
Hamiltonian is

(2.5.1) Htransmon =
EC

2
(N̂CP −NG)2 − EJ0

cos

(
π

Φext

Φ0

)
︸ ︷︷ ︸

where Φext is the magnetic �ux through the loop of Josephson Junctions. These Transmons easily reproduce
the conditions for our desired circuit where EJ0

� EC.
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2.6. Manipulating the Qubit

At the end of the day, we want to use this qubit for quantum computation so controlling the qubit state
is extremely important. Our control should be able to take our qubit and transform it from any state to any
other state on the Bloch sphere. Qualitatively from our knowledge of classical oscillators we expect to be
able to control the state of the qubit by applying a sinusoidal driving force. If the frequency of the driving
force is near the transition frequency of the oscillator, and the oscillator is in the ground state initially, we
expect the oscillator to transition from the ground state to an excited state. Our goal now is to see exactly
how the driving force will a�ect the qubit.

By coupling a driving voltage to the gate capacitor we can write NG in equation 2.4.10 as a sum of a
static component and a time dependent component. Such that NG = N0

G +NG(t) and for simplicity we will
set N0

G = 1
2 and NG(t) = A cos(ωdt+ φ). This makes our Hamiltonian

(2.6.1) Hqb = ECA cos (ωd + φ) σ̂z −
EJ

2
σ̂x

performing a change of basis by rotating our frame by π/2 about the y-axis we get σ̂z → σ̂x while σ̂x → −σ̂z
giving us

(2.6.2) H ′qb = Ā cos(ωdt+ φ)σ̂x +
EJ

2
σ̂z

In matrix form σ̂x =

[
0 1
1 0

]
which corresponds exactly to the sum of the raising and lowering operators

of a two level system. De�ning σ± such that σ̂+ |g〉 = |e〉 and σ̂− |e〉 = |g〉 we �nd from σ̂±ij = 〈i|σ± |j〉 that

σ̂+ =

[
0 0
1 0

]
while σ̂− =

[
0 1
0 0

]
and therefore σ̂x = σ̂+ + σ̂−.

Our next step is to go into a rotating frame, which rotates at the frequency of the driver. This will
allow us to see how the qubit is changed relative to the applied �eld, as apposed to the lab frame where
both would change during the interaction. Since we do not care about the state of the �eld, but only the
qubit itself, our rotating frame should be advantageous. To change to a rotating frame we use the unitary
transformation

(2.6.3) Urot = exp[i
ω

2
σ̂z]

The Schrodinger equation transforms like

(2.6.4) UrotH |ψ〉 = Uroti~
d

dt
|ψ〉

but we need to change the basis as well so that

(2.6.5) Urot |ψ〉 = |ω〉
so changing the basis too gives us

UrotHU
†
rotUrot |ψ〉 = Uroti~

d

dt

(
U†rotUrot |ψ〉

)
UrotHU

†
rot |ω〉 = Uroti~

(
d

dt
U†rot

)
|ω〉+ Uroti~U†rot

d

dt
(|ω〉)[

UrotHU
†
rot − i~Urot

d

dt

(
U†rot

)]
|ω〉 = i~

d

dt
(|ω〉)(2.6.6)

Hrot |ω〉 = i~
d

dt
(|ω〉)

In order to calculate Hrot we see how the Pauli matrices transform into this frame

Urotσ̂zU
†
rot = σ̂z

Urotσ̂xU
†
rot = cos (ωt) σ̂x − sin (ωt) σ̂y

Urotσ̂yU
†
rot = sin (ωt) σ̂x + cos (ωt) σ̂y

Urot
d

dt

(
U†rot

)
= −iω

2
σ̂z(2.6.7)
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Finally, we need some mathematical trickery to make the solution look nice by splitting Ā cos(ωdt+φ)σ̂x into
Ā
2 cos(ωdt+ φ)σ̂x− Ā

2 sin(ωdt+ φ)σ̂x + Ā
2 cos(ωdt+ φ)σ̂x + Ā

2 sin(ωdt+ φ)σ̂x. Now when we substitute in the
transformed Pauli matrices the expanded terms simplify to cos [(ω ∓ ωd) + φ] σ̂x±sin [(ω ∓ ωd) + φ] σ̂y. If we
go into a frame rotating at the drive frequency, ω = ωd, then we get a constant term and a term rotating in
time at twice the speed of the driving frequency. Typically, we ignore these high frequency terms since they
change too quickly compared to the evolution of the system. This is called a rotating wave approximation
and we shall use it again in the next section.

With all of this completed we arrive at a �nal Hamiltonian of the qubit being driven by a sinusoidal
force in the rotating frame as

(2.6.8) Hrot =
ωq − ωd

2
σ̂z +

Ā

2
[cosφσ̂x + sinφσ̂y]

Thus the frequency of the drive causes rotations about the z-axis while the phase of the driving voltage
causes rotations about the x and y axis. In this way we have complete control of the state of the qubit.

2.7. Coupling a Qubit and a Simple Harmonic Resonator

Figure 2.7.1. A Transmon Qubit coupled with a LC
resonator

Our next step will be coupling our Cooper-Pair
Box(Transmon) to a simple harmonic oscillating cir-
cuit like that in the �rst section of this chapter. The
motivation for doing this comes from Cavity Quan-
tum Electrodynamics. Speci�cally, we have recog-
nized our Cooper-Pair Box is much like an arti�cial
atom, which we will want to manipulate in various
ways and take measurements of. In Cavity QED
light interacts weakly with atoms, but ampli�cation
of this interaction can be achieved by trapping the
light inside a cavity. In this way, greater control and
readout of the state of the atom is possible. As we
shall see in a moment by coupling our Qubit to a Linear Harmonic Resonator we will be able to create a
system identical to that of a Cavity QED, which is the �eld of circuit QED. We will not go into the full de-
tail, but doing this has great advantages including, increased qubit lifetime, increased control of qubit-qubit
coupling through a resonator and Quantum Non-Demolition (QND) readout capabilities of the qubits.

Figure 2.7.1 has a simple schematic of our system and the Hamiltonian will be the sum of the Hamiltonian
of the LC resonator and the Qubit such that

(2.7.1) HCQED = HSHO +HQB = ~ωr
(
a†a+

1

2

)
+
EC

2
(1− 2NG) σ̂z −

EJ0

2
σ̂x

Note that we have used the second quantization form of the Hamiltonian for the simple harmonic resonator
and the two level Hamiltonian of the Cooper-Pair Box for the qubit.

Analyzing this equation we recognize the �rst term as the energy of the LC circuit resonator and it is
identical to the energy of a quantized �eld of electromagnetic radiation trapped in a resonator cavity. Closer
inspection of the third term yields that this is related to the energy level separation of our qubit, which will
act as our arti�cial atom. The second term is related to the charging energy and thus the coupling capacitor
between the two systems. This is therefore an interaction energy between our resonator and our arti�cial
atom. We could thus look at our Hamiltonian as the sum of these three energies

(2.7.2) HQED = Hresonator +Hinteraction +Hatom

If you have taken a Quantum Electrodynamics course, or studied any part of quantum optics or ion traps,
this general Hamiltonian should look familiar. These QED interactions between atoms trapped in a resonator
cavity have been studied for a signi�cantly longer period than our quantum circuits and are, relatively
speaking, well understood. A simple model in QED is governed by the Jaynes-Cummings Hamiltonian given
by

(2.7.3) HJC = ~ωc
(
â†â+

1

2

)
+

~ωa
2
σ̂z +

~g
2

(
âσ̂+ + â†σ̂−

)
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ωc is the frequency of the mode of oscillation of the radiation in the cavity and ωa the transition frequency
of the atom trapped in the cavity. g is a coupling factor and σ± are the raising and lower operators of the
atom such that σ+ |g〉 = |e〉, while σ− |e〉 = |g〉, where |g〉 and |e〉 are the ground state and �rst excited state
respectively. It is not necessary that you know any of this already, the main purpose of pointing it out here
is as a motivation for transforming 2.7.1 into a form like 2.7.3.

As a �rst step to transform our given Hamiltonian into a Jaynes-Cummings form, we can see a π/2
rotation about the y-axis, i.e. a change of basis, will transform σ̂z → σ̂x and σ̂x → −σ̂z in our equation.
This will put the Hamiltonians in the same basis. Now, all we have to do is manipulate the interaction part
of the Hamiltonian. NG, which recall is the number of charges built up on the gate capacitor, will have
quantum �uctuations associated with it. In typical circuits these �uctuations are small and play no major
role in the physics of the system, however in our superconducting quantum circuits these �uctuations can not

be ignored. We will therefore split NG into a classical and quantum component such that NG = NCL
G +NQM

G ,
we can set the classical component, which we control via our voltage regulator, to 1/2 so that we can cancel

the constant term. We are left with ECN
QM
G σ̂x. This NG term is related to the voltage in the resonator

circuit via NQM
G = CG

2e V̂ where we note that this variable is no longer continuous but discrete. Using

equations 2.1.9 and 2.1.11 we can write V̂ =
√

~ωr

2C

(
â† + â

)
. Upon substitution the interaction part becomes

(2.7.4) Hint = EC
CG
2e

√
~ωr
2C

(
a† + a

)
σ̂x

By �nding the matrix form of σ̂± and σ̂x we �nd that σ̂x = σ̂+ + σ̂−. Finally,
(
a† + a

)
(σ+ + σ−) =

a†σ+ + a†σ− + aσ+ + aσ− and we see we are nearly �nished.
The last step requires the cancellation of aσ− and a†σ+, which requires changing shortly to the interaction

picture of the system2. In this picture the operators pick up a speci�c time dependence Ô(t) = Ôeiωt so that
our operator terms become

(2.7.5) a†σ+eit(ωr+ωqb) + a†σ−eit(ωr−ωqb) + aσ+e−it(ωr−ωqb) + aσ−e−it(ωr+ωqb)

Now we recognize an interaction occurring at high frequencies ωr + ωqb and at low frequencies ωr − ωqb.
As is done in the Jaynes-Cummings model we neglect the terms at high frequencies, considering their
contributions to the evolution of the system to be too fast for consideration. One might also recognize that
these operations a†σ+ and aσ− do not conserve energy and for our simplistic view, we can ignore them as
physically unrealizable3. This is again a rotating wave approximation.

With this we can rewrite our original Hamiltonian into a Jaynes-Cummings form as

(2.7.6) HCQED = ~ωr
(
a†a+

1

2

)
+ ~g

(
a†σ− + aσ+

)
+
EJ

2
σ̂z

where g is the coupling constant

(2.7.7) g = EC
CG
2e

√
~ωr
2C

= 2e
CG
C∑

√
~ωr
2C

and we have used equation 2.4.3 to substitute for EC . The coupling between the resonator and qubit either
take energy from the resonator circuit and give it to the qubit, aσ+, or take energy from the qubit and give
it to the resonator, a†σ−. These interactions will oscillate with time leading to the phenomenon of Vacuum
Rabi Oscillations at a frequency Ω2

Rabi = 42
qr + 4g2(n+ 1) where n is the Fock state of the resonator, or the

number of �photons� in the cavity and 4qr is the detuning frequency ωq − ωr.

2There are three common �pictures� of quantum mechanics, the Schrodinger picture, the Hamiltonian picture, and the
Dirac/Interaction picture. In the Schrodinger picture, any time dependence of the Hamiltonian will be accounted for in the

state vector |ψ〉, while in the Hamiltonian picture the dependence is absorbed in the operator Ô. In the interaction, or Dirac,
picture the time dependence is shared between both the state and the operators.

3One should not presume these interactions are impossible, in fact they are possible, but in our simple model we neglect
them.
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Figure 2.8.1. The resonant frequency shift and phase shift, (A) and (B) respectively, of a
resonator coupled to a qubit in the dispersive regime

2.8. Measurement of the Qubit-State

As stated in the previous section there are a number of advantages to coupling the qubit to a resonator.
One of the reasons is to perform QND type measurements so our goal now is to determine how we can
measure the state of the qubit in this system.

As a path to �gure out the best way to measure the state of a qubit in this coupled system we �rst
look at how to control the qubit when it is coupled to a resonator. In principle we could create a separate
control circuit which interacts with the qubit directly. However, a more e�cient system might detune the
resonant frequency of the resonator and the qubit, so that when we send a sinusoidal voltage through the
resonator to the qubit, the resonator is hardly perturbed and merely degrades the amplitude of the signal
before it reaches the qubit. However, this detuning means the coupling between the resonator and the
qubit is much weaker and our previously derived Hamiltonian can be simpli�ed further. In the limit that
4qr � g we can treat the coupling as a perturbation, by transforming 2.7.6 with the unitary transformation

U = exp
(
g
4
(
aσ+ − a†σ−

))
and expanding to second order in g we �nd the dispersive Hamiltonian to be

(2.8.1) H4qr
= ~

(
ωr +

g2

4qd
σ̂z

)
a†a+

~
2

(
ωq +

g2

4qd

)
σ̂z

The �rst term in the Hamiltonian looks like a harmonic oscillator with a frequency shifted by a value of

± g2

4qd
such that ω′r = ωr + g2

4qd
σ̂z. This is called the ac-stark shift of the resonator cavity. Recalling that σ̂z

is correlated to the state of the qubit from 2.7.6, we see that the e�ective resonant frequency of the resonator,
ω′r, when it is coupled to a qubit, is dependent on the state of the qubit. Since we are in the dispersive
regime, i.e. the resonant frequency of the resonator and qubit are far detuned, we are free to measure ω′r to
determine the state of the qubit without perturbing the qubit!

Conversely we could rewrite this Hamiltonian as

H4qr
= ~ωrn+

~
2

(
ωq +

g2

4qd
(2n+ 1)

)
σ̂z

were now we see the resonant frequency of the qubit, is dependent on the energy level of the resonator. Thus,
if we wanted to measure the energy level of the resonator we could measure the e�ective resonant frequency
of the qubit. This is actually essential if we wish to initially calibrate the values of the Hamiltonian in a
newly created circuit.

Thus, to measure the state of the qubit all we have to do is perform some basic spectroscopy on the
resonator and we are done. If we were to have computed all of this in the phase basis we would also �nd a
similar phase shift state dependency. These are graphically show in Figure 2.8.1.
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2.9. Larger Complexity and Conclusion

At this point we have covered the basics of superconducting quantum circuits. We started with our
classical understanding of a resonating circuit and gradually increased the complexity to a fully functional
qubit. We have not gone into the full details of this �eld, for example, neglecting dissipation and decoherence,
but attempted only to give a brief overview of the material as to learn the principles of using quantum circuits.
In the lab, these qubits have actually been created with various designs, typically, the role of the resonator
is played by a linear wave guide which can be approximated as an in�nite series of parallel L,C components.
Qubits are capacitively coupled to this waveguide and interact via exchange of �photons� with the resonating
cavity. This can be seen in Figure 2.9.1.

Figure 2.9.1. A) 1D transmission line resonator with coupled qubit, B) Actual resonator
with coupled qubit, the long squiggly line acts as the resonator cavity and the zoomed in
inset, right in the vary middle is the actual Transmon qubit.

At this point in the �eld, qubit-qubit interactions have been demonstrated with these transmission line
qubits as well as a universal set of quantum gates. In fact, all of the DiVincenzo Criteria have been ful�lled
most with a high degree. However, a lot of work and advances are required in the �eld if a real practical
quantum system is to be realized. Such things as increasing coherence times of the qubits, increasing the
�delity of gates, decreasing gate operation time, scaling the circuits down while scaling the number of qubits
up, possible advances in higher temperature superconductors would be useful as well.



CHAPTER 3

Trapped Ions

One of the most prominent candidates for a physical system realizing quantum information processing
is the trapped ion system. In this �eld, charged atoms, ions, are used to create a qubit and lasers are used
to control the state. As we shall see all of the core DiVincenzo criteria have been met with high �delity and
a relatively large number of qubits have been , putting trapped ions arguably at the front of the race for
quantum computation.

The �rst step, of course, will be trapping the ions in a controlled manner for a long period of time in
order to use them. This is not the easiest feat because the electrostatic potential for trapping the ions must
satisfy the Laplace equation

∇2V = 0→ d2V

dx2
+
d2V

dy2
+
d2V

dz2
= 0

Figure 3.0.1. A common Ion Trap

There are a number of solutions to this equation, but the
general form will normally only allow 2 directions to remain
trapped while the third is free. The electrostatic potential
would look something like a horse saddle so that the ion in this
�eld would be harmonically trapped in the x, and y, direction
but free to fall out of the trap in the z direction. This prob-
lem was solved by Wolfgang Paul for which he later received
the Nobel Prize. His Paul trap is basically the same saddle
potential, but rotated quickly about the axis which passes ver-
tically through the origin. Luckily, since the ions are relatively
massive, their acceleration is slow enough that radio frequency
rotations of the �eld is enough to keep the ion at small per-
turbations around the saddle point. Based o� this work the
quadrupole ion trap is the standard for this �eld.

The traditional trap has four long metal rods placed par-
allel to each other to form a rectangular prism. A static DC
�eld is applied across two opposite corners of the rod while an
alternating radio frequency �eld is applied to the other two.
This traps the ions in a string along the central axis through
the prism and creates a nearly ideal harmonic potential for trapping.

Once an ion is trapped, then two energy levels of the atomic state need to be used to de�ne the qubit.
Since we are working with atoms, the energy level diagrams are rather complex and also depend on the
presence of external �elds and which atom you use. Two common ions are Calcium and Beryllium both
with one valence electron stripped o� leaving only a single valence electron in an S orbital con�guration.
There are either hyper�ne qubits which split this ground state into spin states or optical qubits which use
two distinct energy levels. The guiding light, however, for choosing the two states is the relaxation time and
coherence properties of the two states. Fermi's golden rule and a dipole approximation allow one to calculate
the decay time of states as

τ ∝ 1

ω3 |〈0|E · d |1〉|2

After two levels have been identi�ed the next requirement is to initialize the qubit. This is done with a
technique called optical pumping in which a laser is shinned onto the atom of choice and set to a frequency
resonant with the |1〉 state of the qubit and a third excited state in the atom |e〉. This third excited state is
chosen such that it will naturally decay into the |0〉 state and the transition frequency between |0〉 and |e〉 is

34
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di�erent enough from |1〉 and |0〉 so that the laser will not excite an electron in the |0〉 state. After enough
waiting time, ~20ns, the electron has a roughly 99.99% chance of being in the ground state.

In a similar manner, measurement of the qubit states can be performed by shinning a laser on the atom
with a frequency resonant with the |1〉 state and another excited state |e′〉. This excited state is chosen
such that the decay of an electron in this excited state goes back to the |1〉 state and that the transition
frequency is not resonant with the |0〉 state or any other excited state. When the electron decays back into
the |1〉 state it will emit a photon which can be collected. By driving such a transition for a period of time
and collecting the number of photons emitted in that time, the ground and excited state of the atom can be
identi�ed. Speci�cally, if a large number of photons are collected then the qubit was in the excited state,
but if only a few or no photons were collected then the qubit was in the ground state. This is called the
electron shelving method.

Figure 3.0.2. The captured solid angle of
emitted photons is small

The collection of these emission photons is probably
the trickiest and least e�cient processes in the trapped ion
system. The CCD camera or photomultiplier tube used to
capture these photons typically only captures a tiny per-
centage of the total emitted photons. The atom will emit
the photon in a random direction and the imaging system
will only collect a speci�c and small solid angle of the total
possible angles of emission. This leads to readout times
of 100s of microseconds with 1000s of scattering events.
However, even with this limitation the measurement pro-
cess still has a very large �delity as the relaxation time of
the excited states can often be as large as seconds or even
minutes.

Now we need coherent qubit control. Trapped Ion
qubit control is actually completely equivalent to the Su-
perconducting Circuit case when we coupled the qubit to
a harmonic drive. This gave the e�ective Hamiltonian of
2.6.8. The frequency and phase of the laser cause Rabi
oscillations and e�ectively rotate the qubit around the Bloch Sphere in a very controllable and precise way
allowing for arbitrary qubit control.

Figure 3.0.3. Dressed states of ion
in a harmonic trap.

The last and probably most di�cult process for trapped ions
is the qubit-qubit interaction to create a two qubit controlled gate.
There are two main methods to do this, however, both implemen-
tations revolve around the use of the states of motion of the ions in
the trap to provide the coupling of the qubits. Speci�cally, the fact
that the ions are trapped in a one-dimensional string lattice means
that natural vibrational modes will occur. The internal state of the
atoms will couple to the phonons in the lattice creating a set of
dressed states, much like the cavity QED case. The trap is taken to
be harmonic so it acts like a series of springs connecting the ions. In
the �rst implementation by Cirac and Zoller (1995) when the laser
is detuned from the atom at a frequency equal to the natural vibra-
tional frequency of the trap, the internal state of the atom becomes
coupled with the vibrational state of the string. This causes a fre-
quency shift of the Rabi oscillations of the ions dependent on the
number of phonons, ie the vibrational mode, in the trap. In their
implementation they create a CNOT gate by �rst mapping the state
of the control bit onto the vibrational state of the lattice. Then a
single qubit rotation occurs on the target qubit dependent on the
vibrational state of the lattice. Finally, they map the vibrational
state of the lattice back onto the original control qubit.

The second implementation was done by Leibfried et al. (2003)
in which they used the interaction of the lattice with a standing wave to create an e�ective CPHASE
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Figure 3.0.4. Leibfried CPHASE gate

operation. Speci�cally, they shine two interfering lasers on the entire lattice of ions. These interfering lasers
create a standing wave which applies a force on the ions. Based on the frequency di�erence of the two lasers
there are two possible forces the ions feel. If both ions are in the same electronic state they both feel an
identical force. The period of interference is inversely proportional to the the detuning frequency of the
lasers and after one period the string returns to its original state. However, if the two ions are in di�erent
states then they will feel opposing forces and the stretching mode of the lattice is excited so that the two
ions move in opposite directions. After a period of interference this stretching mode will cause the wave
function to pick up a phase. The intensity of the light determines how much of a phase is obtained and it is
chosen in a way that causes a phase of π/2 if the ions which are in di�erent states and no phase if they are
in the same state. E�ectively this interaction creates the gate with matrix

G =


1 0 0 0
0 i 0 0
0 0 i 0
0 0 0 1


.

We have now seen the core of the Divencenzo Criteria ful�lled and the other two criteria will be better
explained in the student presentations about quantum networking and simulations using trapped ions. The
last thing we will discuss here are the next future for Trapped Ions.

The next steps for trapped ions is creating a scalable architecture. Packing more and more qubits into
a single string makes the dynamics as well as individual qubit addressing much more di�cult. There are
already ideas being tinkered with to solve this problem by breaking the string up. Speci�cally, the ions can be
ported around a 2D grid using electrostatic gates. With these gates ions can be physically moved around and
brought together to interact when necessary. Also, by distributing entanglement between sections of strings,
it is possible to simulate one long e�ective string of ions. Of course however, this creates new problems that
will have to be resolved from both a physics and an engineering perspective. Other advances include moving
from a large 4 rod ion trap to an integrated circuit chip design. It is indeed possible to trap ions using a
2D structure, but of course this introduces new di�culties. Also, integrating the lasers and optical capture
devices onto a chip is not a simple engineering challenge. Nevertheless, trapped ions have proved to be one
of the top contenders for a physical system which can implement quantum information processing. It has
demonstrated with large �delities the DiVencenzo criteria, as well as demonstrated other QIS challenges such
as teleportation, super dense coding, error correction, various algorithms and control of the largest number
of qubits simultaneously. There is an entire course on trapped ion physics taught at ETH and if you want
to get in the �eld of trapped ion quantum computing, that is probably a great course to take.



CHAPTER 4

Quantum Dots

4.1. What is a Quantum Dot?

Figure 4.1.1. Top view of a
single quantum dot

Next we look at the �eld of quantum dots as another possibility for
quantum information processing. A quantum dot is a con�ning potential
created within a semiconductor or metal which is capable of trapping a
single electron. The potential itself has well de�ned quantized energy lev-
els which the electron can occupy. The potential can also trap more than
one electron and in this way a quantum dot, acts much like an arti�cial
atom. Not too long ago, a physicist would have been very skeptical if you
told them you could trap a single electron and coherently manipulate and
read-out its spin state, yet today this is quite a common feat.

Before we delve into the aspects of manipulating spin's of electrons in
quantum dots, we shall �rst look at the construction of a quantum dot.
The basic idea is much like for quantum circuit design and the cooper
pair box. We wish to create an island where electrons are con�ned and
which we can control the occupation of the island via a gate voltage.
There are a plethora of designs and materials to create a quantum dot,
however our discussion here will focus mainly on lateral quantum dots
constructed from Gallium Arsenide (GaAs) and Aluminum Gallium Ar-
senide (AlGaAs) heterostructures, as they are the most common. A layer of silicon doped AlGaAs is placed
on top of GaAs. The silicon doping introduces free electrons into the system which tend to accumulate at
the interface between the AlGaAs and the GaAs. These electrons are heavily con�ned to this interface cre-
ating a two dimensional electron gas (2DEG) with high mobilities in the plane. On top of this structure are
placed some metallic gates which will create electrostatic potentials felt by the 2DEG. These gates deplete
the electrons in a particular region creating the quantum dot.

Figure 4.1.2. Chemical potential model
of a single quantum dot

Figure 4.1.1 shows an electron tunneling microscope pic-
ture of a single quantum dot. The light gray parts are the
metallic gates, the white circle in the middle shows the loca-
tion of the quantum dot. The actual 2DEG is typically a few
tens of nanometers below this surface. The white boxes in the
corners of the picture show the Ohmic contacts which burrow
into the structure to make contact with the 2DEG. IDot shows
the �ow of electron current from the right side, source, to the
left side, drain. VR and VL control the tunneling barrier be-
tween the quantum well and the source and drain respectively.
VG controls the �depth� of the well.

The relevant physics of the system can viewed very simply.
First o� we can picture this con�ning potential much like a par-
ticle in a box. The energy levels will be quantized proportional
to the square of the energy level, n, and inversely proportional
to the mass of the electron and the square of the dimensional
length of the box. In addition a Coulomb energy will have to
be overcome if we wish to place more than one electron in the
well, due to the electrons mutual repulsion. Finally, we can not
forget the Pauli-exclusion principle allowing only one electron
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per spin state. The exact details of this system are not particularly relevant for our purposes here since we
will be working in a cold regime (T<0.5K) such that only the ground state of the well is relevant in the
dynamics of the system.

In order to add the e�ects of the gate voltages we use a simplistic chemical potential model. In this
model, depicted in Figure 4.1.2, the chemical potential of the source, drain, and well, depend linearly on
the voltage applied to each area. By increasing the voltage across the source and drain we can linearly raise
and lower the chemical potential of these parts in the graph. If we change the voltage on the gate then we
raise and lower the ladder of states in the quantum dot. The white bars represent the tunnel barriers and
the thickness of these barriers is related to the voltage on the left and right gate in Figure 4.1.1. From all of
this we get unprecedented control of the system.

4.2. Controlling the Number of Electrons on a Quantum Dot

Now that we know how to create a quantum dot, let us look more speci�cally at controlling the the
population of electrons in our dot. By applying a small source-drain voltage we create a tiny window
through which, if an electron state is present in the dot, an electron may move from the source to the drain
creating a measurable current. By changing the gate voltage to more and and more negative values, we
push the ladder of states in the dot higher and higher. This leads to three di�erent possible scenarios in the
chemical potential picture depicted in Figure 4.2.1. In scenario (a) an energy state of the dot falls between
the chemical potential of the source and drain so that an electron can tunnel from the source into the dot,
then out of the dot into the drain. In this con�guration we expect to see a current through the dot. In
scenario (b) our ladder of states in the dot is o�set from the source-drain window such that tunneling can not
occur from the source into the dot. This con�guration is known as a coulomb blockade and we would expect
to see no net current through the dot, however there are still electrons present in the dot itself. Finally, if
we push the gate voltage high enough, we get scenario (c) in which we get a complete depletion of electrons
from the dot. Of course there is no net current in this con�guration as well. Therefore, if we were to plot
the current through the dot as a function of gate voltage, we expect to see spikes of current through the
dot when we have reached a special gate voltage corresponding to the (a) con�guration. These spikes will
be separated by areas of zero current �ow when the con�guration is Coulomb blockaded. Finally, we should
�nd a point where spikes no longer seem to appear and this suggests to us we have reached the (c) regime.
This means the last bump we saw should be the last electron in the dot.

Figure 4.2.1. Quantum dot current as a function of the gate voltage

However, we might be a little skeptical that our instruments are sensitive enough to read a single electron
tunneling through the ground state of the dot. To verify if we have indeed found this last electron a Quantum
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Point Contact is utilized as an extremely sensitive charge sensor. The concept of a Quantum Point Contact
(QPC) is actually rather simple. Two regions with high conductance are separated by a �narrow� channel.
The �width� of this channel restricts the number of electrons which may pass at that time, thus a�ecting the
net current which may �ow between the two regions when a voltage is applied. The QPC is placed spatially
close to the dot, such that the e�ective �width� of the QPC channel is correlated to the presence of electrons
in the dot as well as the gate voltage applied on the dot. As the gate voltage is negatively increased, the
�width� of the QPC gets proportionally smaller. As the number of electrons increases in the dot, the �width�
of the QPC is also increased. Since the presence of electrons in the dot reduces with increasingly negative
gate voltages, we expect to see a current through the QPC that decreases as the gate voltage becomes more
negative, with small positive bumps. The bumps correspond to an electron suddenly tunneling o� of the
dot, due to the increased gate voltage and so its constriction on the QPC channel is now gone, e�ectively
increasing the �width�. This technique proves to be more sensitive for detecting the presence of charges in the
dot and the results of such an experiment are shown in Figure 4.2.2. Now we are con�dent in determining
the number of electrons in the dot.

Figure 4.2.2. Quantum dot current and Quantum Point Contact current as a function of
gate voltage

4.3. Single Electron Spin Qubits

Now that we have complete electrostatic control of our dot, its quite simple to envision a single electron
spin qubit. First cool the dot down to low temperatures, split the ground state using an external magnetic
�eld, separating it into a spin up and down state. These two states have much less energy then the charging
energy so that only one electron can occupy the dot at any time. Then adjust the voltages on the gate to
allow one electron in, only in the lowest spin state, then apply other external magnetic �elds to rotate the
spin as you please. The spin vector will be your Bloch vector and thus your qubit is complete.

The question now is, how to read the spin state of the electron? There are many ways which have been
devised to measure the electron spin state. We will only focus on one of them as it is one of the simplest
schemes to understand. One measurement tool we have already present in our dot structure is the quantum
point contact which can determine the presence of an electron in the dot, but it does not show anything
about the spin of the electron. Some cleaver thought, however, will allow us to create a read-out scheme
using the QPC and allow us to determine the spin of the electron. Speci�cally, if we adjust the levels of the
dot during the �read-out� phase such that the higher energy spin state is above the chemical potential of the
source, while the lower energy state is below it, then a tunnel event will be correlated with the spin state of
the electron. If the electron is in the excited spin state, we would expect to see the electron tunnel o� the



4.3. SINGLE ELECTRON SPIN QUBITS 40

dot for a short time, and then see an electron tunnel back in, into the available lower spin energy state. If
the electron was already in the ground spin state, then we do not expect to see any tunnel events. Indeed
this procedure is done and can visually be seen in Figure 4.3.1.

Figure 4.3.1. Spin read-out procedure

Figure 4.3.2. A double quantum dot

In the �gure we see both the digital read-out as
well as the chemical potential picture of each step.
Initially the QD is emptied, then a rapid positive
increase in the gate voltage drops the dot ladder so
both spin states are available. After a short time an
electron will tunnel into either the excited or ground
spin state of the dot. This can be seen by a quick
decrease in the QPC current/conductance. Then
the gate voltage is changed again so that the ex-
cited spin state is above the chemical potential of
the source and we wait to see if a tunnel even oc-
curs. Once enough time has passed, we will either
see a tunnel event or not, at which point we know
the spin state of the electron. This is called a spin-
to-charge conversion readout. Note in these pictures
the right tunnel barrier is thick so that the electron
does not actually go to the drain. This is for this
scheme irrelevant since we do not care about a net
dot current, only the QPC current.

The next step is to have qubit-qubit interactions
to try and create logic gates. If we place two single
electron quantum dots next to each other, we create
a double quantum dot, and a natural spin-spin coupling will occur between electrons trapped in the wells.
As seen in Figure 4.3.2 the gate structure becomes a little more complex, but is essentially nothing more
than 2 single quantum dots placed next to each other with a central tunnel gate, T . The curve underneath
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the picture is there to help visualize the role of each gate in the underlying potential. R and L create the
tunnel barriers between each dot and the source/drain, while T creates a potential barrier between the two
dots. PL and PR known as the plungers e�ectively determine the depth of the left and right well. With all of
these electrostatic gates, electrons can be shu�ed in, out and between the two dots. Also, with the central
tunnel barrier, the interaction between the two dots can be e�ectively turned on and o�.

In this con�guration the electrons in each well will form overall singlet, or triplet states in the well.
The singlet state has lower energy with a wave function |S〉 = 1/

√
2 (|↑↓〉 − |↓↑〉) while the three degenerate

triplet states T+, T−, T0 have wave functions |T+〉 = |↑↑〉, |T−〉 = |↓↓〉, |T0〉 = 1/
√

2 (|↑↓〉+ |↓↑〉). A simple
model for the interaction Hamiltonian is

(4.3.1) HQDint ≈ JLRσL • σR
where σL,R is the spin of the electron in the left and right dot, while JLR is the coupling term between the
two dots. This coupling term is dependent on the strength of the tunnel barrier between the two dots as
well as the �de-tuning factor� which is simply the di�erence in voltage applied to the left and right plungers.

Greater detail of this system and interaction will be explained in one of the student presentations, since
these double quantum dots are actually now used to de�ne a new type of quantum dot qubit which utilize
the S and T0 states to de�ne the ground and excited state of a single qubit. The reasons for doing this should
also be explained in the presentation, however its su�cient to know that these singlet-triplet qubits are less
susceptible to electrostatic noise in the circuit. As for the single electron spin qubit, when the interaction is
turned on an e�ective SWAP gate is realized where the spin of the each electron �ips, e�ectively �swapping�
the two electron spin states.

These qubits have long relaxation times on the order of milliseconds, and dephasing times as high as mi-
croseconds, while the interaction times are faster than nanoseconds. This is ideal for quantum computational
applications. However, quantum dots and their application to quantum computation are still relatively new
compared to quantum circuits, trapped ions and even older still, nuclear magnetic resonance and photon
based designs.



CHAPTER 5

Linear Optics Quantum Computing

Many of the �rst experiments in quantum computation were done with photons, including quantum
teleportation. The reasons for this are because photons, in many ways, are the most readily available qubit
found in nature. Vertical and horizontal polarization form a natural orthogonal basis for the qubit state.
They only weakly interact with the environment and therefore have extremely long coherence times while at
the same time they travel extremely quickly with little attenuation. This makes them ideal �ying qubits.

On top of the natural characteristics of photons which makes them ideal qubits. The fact that optics has
been a formal �eld for quite some time in physics, well before the notion of quantum information processing,
means that there was already a wealth of knowledge and tools readily available for the experimenters. The
use of dielectric materials and polarizes allow for the control of the phase and polarization of photons. The
use of beam splitters, lenses, mirrors and resonator cavities allow control of the physical path of photons.
Also, relatively e�cient photon detection methods were ready and waiting for use in quantum computing
systems.

Unfortunately, there are a few crucial drawbacks to photon based systems and that is the nearly non-
existent photon-photon interaction and the di�culty for deterministic entanglement and creation of single
photon sources for the necessary Ancilla bits. This makes 2 qubit gates di�cult to realize and drastically
reduces the process �delity of many quantum protocols. Though this drawback does not make it impossible to
create such gates or accomplish such protocols, it does however change the paradigm of linear optic quantum
computing to an inherently non-deterministic form of computing. Nevertheless, proper error-correction,
physical engineering and the rapid speed at which optical circuits can operate all keep linear optic quantum
computing within the realm of possibility for future quantum computing success.

To begin, as always, we start by de�ning the qubit in a photon based system. There are a number
of possibilities for de�ning a qubit with a photon. The three major types are the single-rail, dual-rail and
polarization qubits. The single-rail architecture is conceptually quite easy, the presence or absence of a
photon in a spacial location de�nes the logical |1〉 and |0〉 states respectively. This architecture allows for
deterministic creation of entangled states, but it has the drawback of only allowing for probabilistic single
qubit manipulations. For this reason, this type of qubit is not used very often. In the dual-rail system
the photon's path at a beam splitter is used to de�ne the qubit, while in polarization qubits the internal
polarization of the photon is used. These two types of qubits are actually mathematically equivalent as we
will see in a moment.

First, we will consider a photon incident on a beam splitter. Formally, the left and bottom paths are
de�ned as the two input ports, while the top and right paths are the two output ports as seen in Figure . If
the beam splitter is assumed to be lossless then the re�ection coe�cient of the beam splitter is R = sin2 θ
and the transmission coe�cient is T = 1−R = cos2 θ then the ports input and output relations are given by

a†out = a†in cos θ + ie−iφb†in sin θ(5.0.2)

b†out = ieiφa†in sin θ + b†in cos θ

where φ is a controllable relative phase shift induced during re�ection. The angles θ and φ are the equivalent
angles of rotation on the Bloch sphere and aout and bout are the computational |0〉and |1〉 states respectively.

This convention uses creation and annihilation operators on the spacial (ports) of a and b, hence the
daggers denoting the creation of an a port photon. Speci�cally, if ∅ denotes the vacuum state and |∅∅〉
represents the vacuum state of either the two input ports or two output ports then

a† |∅∅〉 = |∅1〉 b† |∅∅〉 = |1∅〉

42
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As an example we have the 50/50 beam splitter, where R = 0.5→ θ = π
4 and we use φ = π

2 . This beam

splitter would then transform a† → 1√
2

(
a† + b†

)
and b† → 1√

2

(
−a† + b†

)
so that UBS = 1√

2

[
1 1
−1 1

]
.

Another important element is the single port phase shifter. Any transparent material with a di�erent
index of refraction compared to the usual medium of transport will cause a phase shift of the incident photon.
A phase shifter acts only on one particular port so that if we placed a phase shifter in the bout port then the
phase shifter would do something like(

a†

b†

)
→
(

1 0
0 eiΦ

)(
a†

b†

)
As stated previously there are also qubits which utilize the internal polarization to de�ne the qubit. If

we use vertical and horizontal polarization as our logical |0〉and |1〉 then by using wave plates we can have
arbitrary rotation of the polarization vector. A wave plate is a birefringent material which means it has a
refractive index dependent on the polarization and direction of incident light. The material has an internal
fast and slow axis each with a respective index of refraction nSlow > nFast. This induces a phase shift
between components parallel to the slow and fast axis such that

φS,F = kS,F d =
vS,F
c
d =

k

nS,F
d

If the polarization vector of an incident ray makes an angle θ with the fast axis of the wave plate and the
phase angle φ = φF −φS is induced during a propagation distance d through the wave plate, then the general
wave plate relations are

a†H,out = a†H,in cos θ + ie−iφa†V,in sin θ

a†V,out = ieiφa†H,in sin θ + a†V,in cos θ(5.0.3)

where the H and V subscripts denote the horizontal and vertical components respectively. With these waves
plates arbitrary single qubit manipulation are also possible.

By comparing equations 5.0.3 and 5.0.2 it should be obvious that polarization and dual rail qubits are
mathematically equivalent. These two types of qubits can be interchanged through the use of a Polarizing
Beam Splitter, which as the name suggests splits an incident beam into two polarized beams.

Now that we have the di�erent types of qubits and shown that single qubit manipulation is possible, we
move to the subject of 2 qubit gates. Unfortunately, photons do not directly interact and this fact is at the
heart of the problems with linear optic quantum computing. Implementing a two qubit gate where photon
qubits interact with each other is not a natural process. Many strategies have been conceived to try and
get around this issue, but they all have varying limitations. The most widely used idea, so far, is the KLM
scheme which can implement 2 qubit gates in a probabilistic manner.

The core of the KLM architecture involves the Hong-Ou Mandel e�ect and the Bosonic nature of photons.
Returning to the 50/50 beam splitter we consider what happens when two photons are incident at the same
time. Using the beam splitter relations we �nd that

UBSa
†b† |∅∅〉 → 1√

2

(
a† + b†

) 1√
2

(
−a† + b†

)
|∅∅〉

=
1

2

(
−a†2 + b†2

)
|∅∅〉

=
1√
2

(|2∅〉 − |∅2〉)

and what we see here is photon bunching. Both photons are guaranteed to exit the same port. This is the
Hong-Ou Mandel e�ect and it is used in conjunction with non-linear sign gates to create 2 qubit gates.

A non-linear sign gate, NS, performs the following transformation on incident photons

α |0N 〉in + β |1N 〉in + γ |2N 〉in → α |0N 〉out + β |1N 〉out − γ |2N 〉out
where |nN 〉 denotes the number of photons in the port. There are a couple of di�erent ways to physically
implement a non-linear sign gate, but unfortunately they are all probabilistic. The NS gate proposed in the
KLM scheme use 3 beam splitters and 2 detectors as seen in Figure . The transmission coe�cients for the
�rst and last splitter are roughly 85% while the middle splitter has a transmission coe�cient of 17%. The
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NS gate will perform the transformation properly if a single photon is detected in the upper detector and
no photon is found in the lower detector. With a general input state the probability of success is 25%.

Now we can implement the CPHASE gate as seen in Figure . First we note that this uses two dual-rail
qubits. The top qubit has a state |ab〉 where a and b de�ne the ports and the computational basis values
are de�ned such that |0〉comp = |1∅〉 while |1〉comp = |∅1〉. The bottom qubit has the reverse such that the

general state |cd〉 de�nes computational basis states |0〉comp = |∅1〉 and |1〉comp = |1∅〉.
Now if we look at the gate as a whole, we have a beam splitter, NS gate followed by another beam

splitter acting on the middle photons. If our input in the computational basis is |00〉comp then it should be
clear the gate does nothing, since there are no photons in the middle and the photons on the outside just
pass through. For the input states |01〉comp and |10〉comp, 2 photons will never arrive at the NS gate so it

does nothing special. There is a 50% chance these states remain exactly as they were and a 50% chance to
become non-logical qubit states such that one of the qubits is in the general mode state |∅∅〉 and the other
in the state |11〉. Finally with the computational basis input state |11〉comp we get

|11〉comp = |∅11∅〉 = |∅〉 ⊗
(
a†b† |∅∅〉

)
⊗ |∅〉

UBS →
1√
2

(|∅∅2∅〉 − |∅2∅∅〉)

NS → − 1√
2

(|∅∅2∅〉 − |∅2∅∅〉)

= |∅〉 ⊗ 1

2

(
b†2 |∅∅〉 − a†2 |∅∅〉

)
⊗ |∅〉

UBS → |∅〉 ⊗
1

2

(
1

2

(
−a† + b†

)2 |∅∅〉 − 1

2

(
a† + b†

)2 |∅∅〉)⊗ |∅〉
= |∅〉 ⊗

[
1

4

(
a†2 + b†2 − 2a†b†−a†2 − b†2 − 2a†b†

)
|∅∅〉

]
⊗ |∅〉

= − |∅11∅〉 = − |11〉comp

This is our desired CPHASE operation. It can be shown that the probability of success of this gate is equal
to the probability of success of the NS gate squared. If we use the NS gate from the previous paragraph
then this gate has a probability of 1/16 for success.

There is one �nal process which we shall discuss here as it is a common practice for creating entan-
gled ancilla photons. Many quantum protocols and algorithms require initially prepared entangled states,
especially maximally entangled bell states. Previously we discussed the teleportation protocol and found
that entangled states could be generated using Hadamard gates and a CNOT gate. This is possible with
photons based on what we have already discussed, but a second option for creating bell states is using natural
parametric down-conversion. In non-linear optical media, that is media which have polarizations that do
not respond linearly to externally applied electric �elds, an incident photon can sometimes split into two
photons. This conversion conserves energy, momentum and polarization of the incident photon. A 351 nm
photon may split into two 702 nm photons. The scattering trajectories of the photons create overlapping
cones from the incident plane. The conservation of momentum and polarization will make it so that if one
of the photons is at the top of one cone with Vertical polarization, the other photon will be at the bottom
of the other cone with horizontal polarization. The places where the cones overlap correspond to maximally
entangled photons generating the anti-symmetric bell state |Ψ−〉 = 1√

2
(|01〉 − |10〉). The use of a wave-plate

can then convert this into any of the other bell states. This photon pair can then be used as entangled
qubits in any quantum protocol requiring ancilla entangled photon qubits. Typically, Beta Barium Borate
(BBO) is used as the non-linear medium. Of course the scattering events are all probabilistic making this a
non-deterministic process as well.

By this point the non-deterministic nature of linear-optic quantum computing should be apparent. As
stated previously this does not completely cripple quantum information processing using photons it merely
increases some of the engineering di�culties with this physical system. However, the true power of photon
processing is likely to be in its transportation properties. As it stands now, no physical system can transport
quantum information like a photon can and its ease of implementation with already available �ber-optic
cable makes quantum networking with photons one of the most viable and appealing options. It may be
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likely to see a future in which quantum computers are realized on some physical system such as trapped
ions, superconducting circuits, or something else, but that the computers are networked via photon based
systems. This hybridization requires the conversion of one type of qubit into photon based qubits. The
student presentations on trapped ion quantum networking will have more information about this process
using photons to entangle physically distant ions.



CHAPTER 6

NMR

Nuclear Magnetic Resonance was the pioneer physical system for quantum computing. Being the pioneer,
it developed many of the techniques used in the other physical systems discussed so far. Unfortunately, the
limitations of liquid NMR techniques make it a poor candidate for ideal quantum computation as we shall
see in a moment. However, recent developments in Nitrogen-Vacant diamond crystals (N-V centers) may
revive NMR as a possible candidate for quantum computing.

NMR systems de�ne the qubit by using the Zeeman e�ect to split the spin states of spin 1/2 nuclei. By
placing such a molecule in an external magnetic �eld the degeneracy of the up and down spin states is lifted
and the qubit ground and excited state are de�ned. The general Hamiltonian is

H1/2 = −~γB0Iz =

[
−~ω0/2 0

0 ~ω0/2

]
where B0 is the external magnetic �eld in the z-direction, γ is the gyromagnetic ratio of the nucleus and
Iz is the angular momentum operator in the z-direction. This operator is related to the Pauli operators by
σi = 2Ii where i = x, y, z. The energy separation between the two spin states is characterized by the Larmor
frequency ω0/2π which is the angular frequency of the rotation of the nuclear magnetic spin vector around
the magnetic �eld axis.

Nucleus ω0/2π(MHz)
1H 500
2H 77
13C 126
15N -51
9F 470
31P 202

Table 6.0.1. Larmour frequencies (qubit
level seperation) of common NMR nuclei.

This Hamiltonian and the dynamics of the NMR system
are identical to the quantum dot system. However, now that
we are using nuclear spin instead of electron spin, the preces-
sion frequencies are roughly 1000 times slower due to the much
great mass of the nucleus compared to the electron. Also, the
gyromagnetic ratio of each species of nucleus are uniquely dif-
ferent and distinguishable. On top of that a molecule with
many nuclei of even the same species typically have distinct
frequencies as well, known as the chemical shift ci. In this way
a complete NMR molecule such as that shown in Figure 6.0.1
can be described by the Hamiltonian

Hnuc = −
n∑
i=1

~(1− ci)γiB0I
i
z = −

n∑
i=1

~ωi0Iiz

Table 6.0.1 shows typical values of Larmour frequencies for various nuclei, while the graph in Figure 6.0.1
shows the relevant chemical shifts for the Fluorine nuclei of the complex molecule also depicted in the �gure.
This data is obtained by resonant spectroscopy on the molecules.

For single qubit rotations, an electromagnetic �eld perpendicular to the z axis is used to drive the spin
vector around the Bloch sphere. In a similar method used to derive equation 2.6.8 we �nd the control
Hamiltonian to be

Hcontrol = −~ (ω0 − ωd) Iz − ~ω1 [cosφIx + sinφIy]

and we see again that the phase of the driving �eld will cause rotations of the spin vector about the x and
y axes, so that we have complete single qubit control.

Luckily, nuclear spin states naturally interact via two methods, which make qubit-qubit interactions
relatively easy to do. The �rst interaction occurs via a physical proximity and a natural magnetic dipole-
dipole interaction. The second method is indirectly through shared electrons in chemical bonds. In the most
simplest case, though a case not to di�cult to achieve, both of these interactions can be modeled by the
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Figure 6.0.1. A) A complex molecule used as a 5 qubit processor for NMR B) The relative
i.e. zeroed about 470 MHz resonant spectrum of the 5 Fluorine nuclei

Hamiltonian

(6.0.4) HJ = ~
n∑
i<j

2πJijI
i
zI
j
z

which basically states that one magnetic spin feels the presence of another by a constant factor, J . Since
the interaction is spin state dependent, i.e. if Ijz is in the 0 or 1 state, this creates energy shifts of one spin
state dependent on all of the other spin states. Figure illustrates these relative shifts for 2 interacting spins
and the 5 interacting Fluorine spins of the complex molecule in Figure 6.0.1.

Figure 6.0.2. Shifted energy levels due to spin coupling of qubits. A) Shifts due to the
presence of 1 other nuclei B) the 16 shifts of 1 F nuclei due to the presence of the 4 other
F nuclei of the molecule depicted in Figure 6.0.1

Using this interaction a CNOT gate can be constructed via the following pulse sequence. First, applying
a 90o rotation about the y-axis on the target qubit, in order to bring it to the equator. Then it is allowed to
naturally precess, and the precession frequency will be shifted based on the spin state of the other molecule

via equation 6.0.4. The shift will cause it to rotate faster or slower so that after a time
Jij
2 the spin vector

will either be along the positive or negative y-axis. Then another 90o rotation about the x-axis is applied
and this will bring the spin vector back to the z-axis in either the 1 or 0 state dependent on the state of the
other qubit.

One obstacle to NMR is the fact that a single molecule represents the quantum processor, but the
experiment uses a liquid of roughly 1026of these molecules to produce a large enough signal for detection.
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Figure 6.0.3. E�ective Pure State Preparation for Liquid NMR Quantum Computing

The measured output signal will then be the result of 1026 independent quantum computers running an
algorithm in parallel and all of these results will show up in the output signal. This liquid (to be a liquid)
can rarely be cooled to low enough temperatures to guarantee all the processors are in their ground state.
This means that the input of the algorithm will not be a pure state but a mixture of state with a statistical
distribution of the various possible energy states of the system. It seems hard to have a deterministic output
when the input itself is not deterministic.

To get around this problem and e�ectively initializing a pure quantum state of N qubits,
(
2N − 1

)
(later this was improved to

(
2N − 1

)
/N) experiments are performed and the results are averaged. In these

experiments, the non-ground states are cyclically permuted using standard CNOT and SWAP gates on the
qubits. In this way the average output of the experiments will e�ectively cancel the contributions from
the non-ground states and only the result from the desired pure ground state will remain. This is most
easily understood using the 2 qubit example in Figure 6.0.3. There are 4 possible energy states for the 2
qubit system with an exponentially decaying occupation number. By swapping the non-ground states and
averaging the result, the net e�ect will be a result from only the desired ground state. This e�ectively makes
the system appear quasi-cold and is called quantum bulk computing.

There are a number of other obstacles to NMR QC, which to various degrees were overcome including
overcoming undesired crosstalk between qubits, increasing the coupling between distant qubit nuclei, speci�c
qubit addressing and the inability to �turn o�� the coupling between qubits. Many of the techniques used
to solve these problems including pulse shaping, echo refocusing, composite pulses etc were later adapted to
other architectures. However, the largest draw back to liquid NMR is the issue of scalability.

Scalability of liquid NMR is really the nail in the co�n for this �eld. The coherence time tends to
decrease with larger molecule size. Finding or creating ideal molecules with larger number of usable qubits
is di�cult. Noise also tends to increase with molecule size and complexity. For any quantum system to
truly be scalable each component of the system must have a probability of failure below some maximum
value to produce a reliable quantum computing system. This is a consequence of error correction coding
and implementation techniques. This threshold error probability is roughly around 10−4 and unfortunately,
as of yet, has not been achieved in liquid NMR. This threshold has been achieved in most of the other
architectures, making them much more promising avenues for quantum computing.

Finally, it has also been argued that many liquid NMR experiments, due to a lack of true entanglement
of the qubits in the system, are not truly quantum systems. Entanglement is assumed to be one of the core
criteria for a real quantum computer and it suggests that liquid NMR might only be a quantum simulation
on a classical computer.

All in all, Liquid NMR has successfully implemented a number of quantum algorithms with a high
degree of control. It has certainty left its mark on the �eld of quantum computation by contributing
numerous experimental techniques and though liquid NMR may not be an ideal candidate for a future
quantum computing architecture, there is some hope for NMR in the new area of Nitrogen-Vacant crystals
or other similar point defect crystals.


