ETH zürich

D-Wave: real quantum computer ?

M. Johnson et al., "*Quantum annealing with manufactured spins*", Nature 473, 194-198 (2011) S. Boixo et al., "*Evidence for quantum annealing wiht more than one hundred qubits*", Nature Physics 10, 218-224 (2014)

Marc Serra, Gustavo Villares

Solving optimization problems

Goal of optimization problems:

- A general optimization problem is defined by cost function, seen as the energy of a physical system
- The goal is to find the **global energy minimum**, while avoiding local minima

Ising spin glass model

Characteristics:

- NP-hard problem
- No efficient algorithm exists to find it ground state

Is there a way to find the ground state of the Ising Hamiltonian efficiently ?

Annealing: way to find Ising's model ground state

ETHzürich

Ising spin system and quantum computing

Implementation of a processor using quantum annealing:

- Programmable quantum spin system
- Control individual spins and the couplings
- Perform quantum annealing
- Reading the value of each state

Supply ENERGY program

D-wave solution: array of internconnected superconductings flux qubits

EHzürich

Superconduction flux qubits

Coupling between flux qubits

- Device only composed of **superconducting wires** and **Josephson jonctions**
- 5 main parts

ETHzürich

ETH zürich

Final chip architecture

- Total of 128 qubits (8 qubits per main block)
- Connected in a complete bipartite graph and interacting via couples

ETHzürich

Performing annealing with D-wave

- Main steps:
 - 1. Initialization
 - 2. Annealing
 - 3. Read-out

$$\mathcal{H}(t) = \Gamma(t) \sum_{i=1}^{N} \Delta_i \sigma_i^x + \Lambda(t) \mathcal{H}_{\mathrm{P}}$$

1. Initialization

$$I = 1, \Lambda = 0$$

$$\sum_{i=1}^N \Delta_i \sigma_i^x$$

Ground state: superposition of all states in the basis

2. Annealing: slow change of the Hamiltonian

3. Read out: measures the magnetisation of the qubit, not its quantum state

EHzürich

Proof of quantum annealing: T-dependence (1/2)

- Measure **freeze time** (time at which the system can no longer respond to changes in its energy landscape):
 - Thermal annealing > t_{freeze} has a linear dependence on temperature
 - Quantum annealing ->t_{freeze} is independent of temperature

Proof of quantum annealing: T-dependence (2/2)

For a **single qubit**: quantum annealing

Quantum regime

Same observation for 8 coupled qubits

Problem solving performance

Determine the "quantumness" of the D-Wave machine by comparint the difficulty of solving a problem with classical and quantum simulation

- Pick 1000 random problem instances, run different algorithms 1000 times and compare results each time with the correct solution.
- Determine the probability of getting the correct result.
- Compare the probabilities of getting the correct result for each problem between classical and quantum methods

[1] "Evidence for quantum annealing with more than one hundred qubits", Seung Woo Shin, Graeme Smith, J and Umesh Vazirani (Jan 2014) Results:

•

Problem solving performance

Determine the "quantumness" of the D-Wave machine by comparing the difficulty of solving a problem with classical and quantum simulation

- Simulated Quantum annealing and the D-Wave have a bimodal distribution.
 - Simulated annealing has an unimodal distribution
 - D-Wave seems to correlate better with simulated quantum annealing than with simulated thermal annealing.

02/05/14

| 13

Marc Serra, Gustavo Villares |

Problem solving performance

Compare the difficulty* of solving a problem with classical and quantum simulation

- Problems hard for quantum algorithms are hard for the D-Wave. (High correlation)
- Problems hard for a classical algorithm are not necessarily hard for the D-Wave. (Low correlation)
- Simulated quantum algorithm running on a classical computer still faster than D-Wave

*Number of instances that are not solved after 1000 iterations

Controversy about the results

In favor of D-Wave

Opposed to D-Wave

[1] "How 'Quantum' is the D-Wave Machine?", Seung Woo Shin, Graeme Smith, John A. Smolin, and Umesh Vazirani (Jan 2014)
[2] "Distinguishing quantum and classical models for the D-Wave device", Vinci, W., Albash, T., Mishra, A., Warburton, P. A. & Lidar, D. A. (Mar 2014)

Scalability of the D-Wave

• Hardness of problems is affected by the height of avoided crossings (How energetically-close wrong solutions are). Dictates required "slowness" to ensure the system stays in the ground state.

- Not all qubits are connected to each other.
- Gap energy Δ decreases exponentially with problem size.
- Does not turn exponential problem into polynomial problem. May still provide speedup.

Summary/Conclusion

- The D-Wave "Quantum Computer" is a device based on superconducting qubits that simulates the Ising spin model.
- The D-Wave computer exhibits physical signatures of quantum behavior
 - Dependence of the freezing time with temperature
 - "Hardness" of problems correlates well with simulated quantum algorithms
- There is an ongoing (As of April 2014) debate on the literature on whether the "Quantumness" of the D-Wave is fine-grained enough for quantum computation or it can be explained by mean field theories.
- Current implementation not faster than a classical computer

Outlook, debate

- Is D-Wave on the right path?
 - Can a machine that is not an universal quantum computer use quantum physics to solve problems faster?
 - Should research focus on technology that can work in the near future, or at least not neglect it?
 - Will D-Wave eventually evolve into such a device?
 - Is the approach by D-Wave scientifically acceptable?