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and Y axes (Supplementary Information). We benchmark X
and Y axis ⇡ and ⇡/2 rotations, the Hadamard gate (imple-
mented with Y/2 followed by X), and Z axis rotations using
pulses on the frequency control line. From the data in Fig. 2
we extract the individual gate fidelities listed in the legend.
We find an average fidelity of 99.92 % over all gates and qubits
(Supplementary Information). The best fidelities are achieved
by optimising the pulse amplitude and frequency, and min-
imising 2-state leakage20 [Kelly, J., et al., in preparation].

We have also measured the performance when simulta-

FIG. 1: Architecture. (a) Optical image of the integrated Joseph-
son quantum processor, consisting of Al (dark) on sapphire (light).
The five cross-shaped devices are the Xmon variant of the trans-
mon qubit13, labelled Q0 � Q4, placed in a linear array. To the
left of the qubits are five meandering coplanar waveguide resonators
used for individual state readout. Control wiring is brought in from
the contact pads at the edge of the chip, ending at the right of the
qubits. (b) Circuit diagram. Our architecture employs direct, nearest-
neighbour coupling of the qubits (red/orange), made possible by the
nodal connectivity of the Xmon qubit. Using a single readout line,
each qubit can be measured using frequency-domain multiplexing
(blue). Individual qubits are driven through capacitively-coupled
microwave control lines (XY), and frequency control is achieved
through inductively-coupled dc lines (Z) (purple). (c) Schematic rep-
resentation of an entangling operation using a controlled-Z gate with
unitary representation UCZ: (I) Qubits at rest, at distinct frequen-
cies with minimal interaction. (II) When brought near resonance, the
state-dependent frequency shift brings about a rotation conditional
on the qubit states. (III) Qubits are returned to their rest frequency.

neously operating nearest or next-nearest qubits21, operating
them at dissimilar idle frequencies to minimise coupling. The
fidelities are essentially unchanged, with small added errors
< 2 · 10�4 (Supplementary Information), showing a high de-
gree of addressability for this architecture.

The two-qubit CZ gate is implemented by tuning one qubit
in frequency along a “fast adiabatic” trajectory which takes
the two-qubit |11i state close to the avoided-level crossing
with the |02i state, yielding a state-dependent relative phase
shift. This implementation is the natural choice for weakly
anharmonic, frequency-tunable qubits, as the other computa-
tional states are left unchanged8,22,23. Having the CZ gate adi-
abatic as well as fast is advantageous. An adiabatic trajectory
is easily optimised and allows for exponentially suppressing
leakage into the non-computational |02i-state with gate dura-
tion. Having a fast CZ gate minimises the accumulation of er-
rors from decoherence and unwanted entanglement with other
circuit elements, favourable for fault-tolerance.

FIG. 2: Single qubit randomised benchmarking. (a) A reference
experiment is performed by generating a sequence of m random Clif-
fords, which are inverted by the recovery Clifford Cr . A specific gate
(H) is tested using a sequence that interleaves H with m random
Cliffords. The difference between interleaved and reference decay
gives the gate fidelity. (b) Representative pulse sequence for a set
of four Cliffords and their recovery, generated with ⇡ and ⇡/2 ro-
tations about X and Y , displaying both the real (I) and imaginary
(Q) microwave pulse envelopes before up-conversion by quadrature
mixing to the qubit frequency. (c) Randomised benchmarking mea-
surement for the set of single-qubit gates for qubit Q2, plotting ref-
erence and gate fidelities as a function of the sequence length m;
the fidelity for each value of m was measured for k = 40 different
sequences. The fit to the reference set yields an average error per
Clifford of rref = 0.0011, consistent with an average gate fidelity of
1� rref/1.875 = 0.9994 (Supplementary Information). The dashed
lines indicate the thresholds for exceeding gate fidelities of 0.998 and
0.999. The fidelities for each of the single-qubit gates are tabulated
in the legend, we find that all gates have fidelities greater than 0.999.
Standard deviations are typically 5 · 10�5.

levels, producing a frequency shift f/2p of the lower branch with
respect to the sum fL 1 fR, in good agreement with a numerical dia-
gonalization of the generalized Tavis–Cummings Hamiltonian28 (see
Methods).

This shift is the mechanism of our conditional phase gate. Flux
pulses, adiabatic with respect to the j1, 1æ « j0, 2æ avoided crossing,
produce phase gates

U~

1 0 0 0

0 eiw01 0 0

0 0 eiw10 0

0 0 0 eiw11

0

BBB@

1

CCCA

in the computational Hilbert space. Here, wlr 5 2p#dflr(t)dt is the
dynamical phase acquired by jl, ræ, and dflr is the deviation of flr from
its value at point I. A VR pulse into point II such that
#f(t)dt 5 (2n 1 1)p with integer n implements a C-Phase gate,
because w11 5 w01 1 w10 2 #f(t)dt. This method of realizing a
C-Phase gate by adiabatically using the avoided crossing between
computational and non-computational states is generally applicable
to qubit implementations with finite anharmonicity, such as trans-
mons12 or phase qubits13. A similar approach involving higher excita-
tion levels but with non-adiabatic pulses was previously proposed29.
The negative anharmonicity permits the phase gate at point II to
occur before the onset of transverse coupling at point III.

Control of f by two orders of magnitude provides an excellent on-
off ratio for the C-Phase gate. Measurements of f obtained from
spectroscopy and from time-domain experiments show very good
agreement (Fig. 2c). The time-domain method measures the differ-
ence in the precession frequency of QL in two Ramsey-style experi-
ments, where a VR-pulse of varying duration (0–100 ns) is inserted
between p/2 rotations of QL, with QR either in the ground state j0æ or
excited into state j1æ. Using the time-domain approach, we measure a
residual f/2p< 1.2 MHz at point I (star in Fig. 2c). The theoretical f
obtained by numerical diagonalization shows reasonable agreement
with the data, except for a scale factor that is probably due to higher
modes of the cavity25, not included in the calculation.

The controlled phase interaction allows universal two-qubit gates.
As an example, we produce entangled states on demand (Fig. 3). The
pulse sequence in Fig. 3a generates any of the four Bell states,
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depending on the choice of C-Phase gate cUij applied

(cUij l, rj i~ {1ð Þdil djr l, rj i, where d is Kronecker’s delta). We achieve
#f(t)dt 5p by tuning the amplitude of a 30 ns VR-pulse close to point
II and back. During the pulse, QR acquires a large dynamical phase
w01 < 260p. The four cUij gates differ by whether w01 and w10 are
even or odd multiples of p. We tune w01 over a 2p range by adjusting
the rising and falling edges of the pulse, and w10 by varying the
amplitude of a simultaneous weak VL-pulse (Supplementary Fig. 3).
The conditional phase #f(t)dt is largely independent of these two
adjustments.

To detect the entanglement, we reconstruct the two-qubit density
matrix r by quantum state tomography using joint dispersive read-
out9,22,24. A pulsed measurement of the homodyne voltage VH mea-
sures the operator:

M~b1sL
z zb2sR

z zb12sL
z6sR

z

Operation in the strong-dispersive regime23,24 makes the three con-
stant coefficients have approximately the same magnitude,
jb12j< jb1j, jb2j, enhancing sensitivity to two-qubit correlations. A
complete set of 15 linearly independent operators is built using sin-
gle-qubit rotations before measuring M. An ensemble average of each
operator is obtained by executing the sequence in Fig. 3a 450,000
times. The 15 average values are then input to a maximum-likelihood
estimator of r (Supplementary Information).

The inferred density matrices rml reveal in all four cases (Fig. 3b–e)
a high degree of two-qubit entanglement, which we quantify using
concurrence30, C. Values are listed in Fig. 3 legend, along with the
metrics of purity P(r) 5 Tr(r2) and fidelity to the target state jyæ,
F(r, y) 5 Æyjrjyæ. Note that there are several common definitions of
fidelity in the literature, and our definition is the square of the fidelity
used in refs 18 and 24. The quoted values significantly extend the state
of the art for solid-state entanglement18, and provide evidence that we
have a high-fidelity universal set of two-qubit gates.

One- and two-qubit gates can be concatenated to realize simple
algorithms, such as Grover’s quantum search1,2 shown in Fig. 4.
Given a function f(x) on the two-bit set x[ 00, 01, 10, 11f g such that
f(x) 5 0 except at some x0, where f(x0) 5 1, this well-known algo-
rithm can determine x0 with a single call of an oracle O that encodes

Figure 1 | Two-qubit cQED device, and cavity/qubit characterization.
a, Optical micrograph of four-port device with a coplanar waveguide cavity
bus coupling transmon qubits QL and QR (coloured red and blue in insets),
and local flux-bias lines providing fast qubit tuning. Microwave pulses at the
qubit transition frequencies fL and fR drive single-qubit rotations, and a
pulsed measurement of the cavity homodyne voltage VH (at frequency fC)
provides two-qubit readout. The flux-bias lines (bottom-left and top-right
ports) are coplanar waveguides with short-circuit termination next to their
target qubit. The termination geometry allows currents (IL and IR) on the
lines to couple flux through the split junctions (b, inset). b, Grey-scale

images of cavity transmission and of qubit spectroscopy as a function of VR,
showing local tuning of QR across the avoided crossing with QL (point III)
and across the vacuum Rabi splitting with the cavity (point IV). Semi-
transparent lines are theoretical best fits obtained from numerical
diagonalization of a generalized Tavis–Cummings Hamiltonian28. Points I
and II are the operating points of the processor. Preparation, single-qubit
operations and measurements are performed at point I, and a C-Phase gate is
achieved by pulsing into point II. Numerals indicate excitation level of QL

(red) and QR (blue) in the spectroscopy at point I.
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!  Grover algorithm: theory 

!  Implementing the C-Phase gate on a 2-qubit processor 
!  Experimental demonstration of the Grover algorithm 

!  High-fidelity gates and multi-qubit entanglement on a 5-
qubit processor 
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!  Structured Database: Given a name, find the phone 
number 
!  Easy to do! 

!  Unstructured Database: Given a phone number, find the 
name 
!  Classically: N-1 operations 
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Motivation: Searching a Database 

QSIT Student Presentation 2013 

Quantum Grover Algorithm:  
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!  Store indices of N = 2n elements in n qubits 
!  Example: for N = 4 the elements are represented by the states 

!  Oracle O: recognizes the solution 
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Grover Algorithm: Ingredients 
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In the general case, oracle is a “black box” Nielsen & Chuang 2010 
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!  Start with state 

!  Put computer in equal superposition state: 
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Grover Algorithm: Initialization 

Exploit quantum parallelism 
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Apply Hadamard gate to each qubit 

Nielsen & Chuang 2010 
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The quantum search algorithm 253

Figure 6.3. The action of a single Grover iteration, G: the state vector is rotated by θ towards the superposition
|β⟩ of all solutions to the search problem. Initially, it is inclined at angle θ/2 from |α⟩, a state orthogonal to |β⟩.
An oracle operation O reflects the state about the state |α⟩, then the operation 2|ψ⟩⟨ψ|− I reflects it about |ψ⟩.
In the figure |α⟩ and |β⟩ are lengthened slightly to reduce clutter (all states should be unit vectors). After repeated
Grover iterations, the state vector gets close to |β⟩, at which point an observation in the computational basis
outputs a solution to the search problem with high probability. The remarkable efficiency of the algorithm occurs
because θ behaves like Ω(

√

M/N ), so only O(
√

N/M ) applications of G are required to rotate the state vector
close to |β⟩.

where θ is a real number in the range 0 to π/2 (assuming for simplicity that
M ≤ N/2; this limitation will be lifted shortly), chosen so that

sin θ =
2
√

M (N − M )
N

. (6.14)

6.1.4 Performance
How many times must the Grover iteration be repeated in order to rotate |ψ⟩ near |β⟩?
The initial state of the system is |ψ⟩ =

√

(N − M )/N |α⟩ +
√

M/N |β⟩, so rotating
through arccos

√

M/N radians takes the system to |β⟩. Let CI(x) denote the integer
closest to the real number x, where by convention we round halves down, CI(3.5) = 3,
for example. Then repeating the Grover iteration

R = CI

(

arccos
√

M/N

θ

)

(6.15)

times rotates |ψ⟩ to within an angle θ/2 ≤ π/4 of |β⟩. Observation of the state in the
computational basis then yields a solution to the search problem with probability at least
one-half. Indeed, for specific values of M and N it is possible to achieve a much higher
probability of success. For example, when M ≪ N we have θ ≈ sin θ ≈ 2

√

M/N , and
thus the angular error in the final state is at most θ/2 ≈

√

M/N , giving a probability
of error of at most M/N . Note that R depends on the number of solutions M , but not

!  In each iteration step 
1.  Apply Oracle O 
2.  Apply “inversion about mean”  
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Grover Algorithm: Iteration 
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Nielsen & Chuang 2010 
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!  Each iteration step corresponds to a rotation 

!  Iterations needed to get solution: 

!  Special case: for N = 4 (two qubits), only a single iteration 
is needed! 
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Grover Algorithm: Result 
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!  We want to implement inversion about mean on computer 
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Decomposition of Inversion about the Mean 

1)  Hadamard gate 
2)  Conditional phase 

shift 
3)  Hadamard gate 

Decompose into single- and multi-qubit gates 

The quantum search algorithm 251

(4) Apply the Hadamard transform H⊗n.

Exercise 6.1: Show that the unitary operator corresponding to the phase shift in the
Grover iteration is 2|0⟩⟨0|− I.

Figure 6.1. Schematic circuit for the quantum search algorithm. The oracle may employ work qubits for its
implementation, but the analysis of the quantum search algorithm involves only the n qubit register.

Figure 6.2. Circuit for the Grover iteration, G.

Each of the operations in the Grover iteration may be efficiently implemented on
a quantum computer. Steps 2 and 4, the Hadamard transforms, require n = log(N )
operations each. Step 3, the conditional phase shift, may be implemented using the
techniques of Section 4.3, using O(n) gates. The cost of the oracle call depends upon
the specific application; for now, we merely need note that the Grover iteration requires
only a single oracle call. It is useful to note that the combined effect of steps 2, 3, and 4
is

H⊗n(2|0⟩⟨0|− I)H⊗n = 2|ψ⟩⟨ψ|− I , (6.6)

where |ψ⟩ is the equally weighted superposition of states, (6.4). Thus the Grover iteration,
G, may be written G = (2|ψ⟩⟨ψ|− I)O.
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Grover iteration is 2|0⟩⟨0|− I.
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the specific application; for now, we merely need note that the Grover iteration requires
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is
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G, may be written G = (2|ψ⟩⟨ψ|− I)O.
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levels, producing a frequency shift f/2p of the lower branch with
respect to the sum fL 1 fR, in good agreement with a numerical dia-
gonalization of the generalized Tavis–Cummings Hamiltonian28 (see
Methods).

This shift is the mechanism of our conditional phase gate. Flux
pulses, adiabatic with respect to the j1, 1æ « j0, 2æ avoided crossing,
produce phase gates

U~
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0 eiw01 0 0

0 0 eiw10 0

0 0 0 eiw11

0

BBB@

1

CCCA

in the computational Hilbert space. Here, wlr 5 2p#dflr(t)dt is the
dynamical phase acquired by jl, ræ, and dflr is the deviation of flr from
its value at point I. A VR pulse into point II such that
#f(t)dt 5 (2n 1 1)p with integer n implements a C-Phase gate,
because w11 5 w01 1 w10 2 #f(t)dt. This method of realizing a
C-Phase gate by adiabatically using the avoided crossing between
computational and non-computational states is generally applicable
to qubit implementations with finite anharmonicity, such as trans-
mons12 or phase qubits13. A similar approach involving higher excita-
tion levels but with non-adiabatic pulses was previously proposed29.
The negative anharmonicity permits the phase gate at point II to
occur before the onset of transverse coupling at point III.

Control of f by two orders of magnitude provides an excellent on-
off ratio for the C-Phase gate. Measurements of f obtained from
spectroscopy and from time-domain experiments show very good
agreement (Fig. 2c). The time-domain method measures the differ-
ence in the precession frequency of QL in two Ramsey-style experi-
ments, where a VR-pulse of varying duration (0–100 ns) is inserted
between p/2 rotations of QL, with QR either in the ground state j0æ or
excited into state j1æ. Using the time-domain approach, we measure a
residual f/2p< 1.2 MHz at point I (star in Fig. 2c). The theoretical f
obtained by numerical diagonalization shows reasonable agreement
with the data, except for a scale factor that is probably due to higher
modes of the cavity25, not included in the calculation.

The controlled phase interaction allows universal two-qubit gates.
As an example, we produce entangled states on demand (Fig. 3). The
pulse sequence in Fig. 3a generates any of the four Bell states,

Y+
!! "

~ 1ffiffi
2
p 0, 0j i+ 1, 1j ið Þ W+

!! "
~ 1ffiffi

2
p 0, 1j i+ 1, 0j ið Þ

depending on the choice of C-Phase gate cUij applied

(cUij l, rj i~ {1ð Þdil djr l, rj i, where d is Kronecker’s delta). We achieve
#f(t)dt 5p by tuning the amplitude of a 30 ns VR-pulse close to point
II and back. During the pulse, QR acquires a large dynamical phase
w01 < 260p. The four cUij gates differ by whether w01 and w10 are
even or odd multiples of p. We tune w01 over a 2p range by adjusting
the rising and falling edges of the pulse, and w10 by varying the
amplitude of a simultaneous weak VL-pulse (Supplementary Fig. 3).
The conditional phase #f(t)dt is largely independent of these two
adjustments.

To detect the entanglement, we reconstruct the two-qubit density
matrix r by quantum state tomography using joint dispersive read-
out9,22,24. A pulsed measurement of the homodyne voltage VH mea-
sures the operator:

M~b1sL
z zb2sR

z zb12sL
z6sR

z

Operation in the strong-dispersive regime23,24 makes the three con-
stant coefficients have approximately the same magnitude,
jb12j< jb1j, jb2j, enhancing sensitivity to two-qubit correlations. A
complete set of 15 linearly independent operators is built using sin-
gle-qubit rotations before measuring M. An ensemble average of each
operator is obtained by executing the sequence in Fig. 3a 450,000
times. The 15 average values are then input to a maximum-likelihood
estimator of r (Supplementary Information).

The inferred density matrices rml reveal in all four cases (Fig. 3b–e)
a high degree of two-qubit entanglement, which we quantify using
concurrence30, C. Values are listed in Fig. 3 legend, along with the
metrics of purity P(r) 5 Tr(r2) and fidelity to the target state jyæ,
F(r, y) 5 Æyjrjyæ. Note that there are several common definitions of
fidelity in the literature, and our definition is the square of the fidelity
used in refs 18 and 24. The quoted values significantly extend the state
of the art for solid-state entanglement18, and provide evidence that we
have a high-fidelity universal set of two-qubit gates.

One- and two-qubit gates can be concatenated to realize simple
algorithms, such as Grover’s quantum search1,2 shown in Fig. 4.
Given a function f(x) on the two-bit set x[ 00, 01, 10, 11f g such that
f(x) 5 0 except at some x0, where f(x0) 5 1, this well-known algo-
rithm can determine x0 with a single call of an oracle O that encodes

Figure 1 | Two-qubit cQED device, and cavity/qubit characterization.
a, Optical micrograph of four-port device with a coplanar waveguide cavity
bus coupling transmon qubits QL and QR (coloured red and blue in insets),
and local flux-bias lines providing fast qubit tuning. Microwave pulses at the
qubit transition frequencies fL and fR drive single-qubit rotations, and a
pulsed measurement of the cavity homodyne voltage VH (at frequency fC)
provides two-qubit readout. The flux-bias lines (bottom-left and top-right
ports) are coplanar waveguides with short-circuit termination next to their
target qubit. The termination geometry allows currents (IL and IR) on the
lines to couple flux through the split junctions (b, inset). b, Grey-scale

images of cavity transmission and of qubit spectroscopy as a function of VR,
showing local tuning of QR across the avoided crossing with QL (point III)
and across the vacuum Rabi splitting with the cavity (point IV). Semi-
transparent lines are theoretical best fits obtained from numerical
diagonalization of a generalized Tavis–Cummings Hamiltonian28. Points I
and II are the operating points of the processor. Preparation, single-qubit
operations and measurements are performed at point I, and a C-Phase gate is
achieved by pulsing into point II. Numerals indicate excitation level of QL

(red) and QR (blue) in the spectroscopy at point I.
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levels, producing a frequency shift f/2p of the lower branch with
respect to the sum fL 1 fR, in good agreement with a numerical dia-
gonalization of the generalized Tavis–Cummings Hamiltonian28 (see
Methods).

This shift is the mechanism of our conditional phase gate. Flux
pulses, adiabatic with respect to the j1, 1æ « j0, 2æ avoided crossing,
produce phase gates
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in the computational Hilbert space. Here, wlr 5 2p#dflr(t)dt is the
dynamical phase acquired by jl, ræ, and dflr is the deviation of flr from
its value at point I. A VR pulse into point II such that
#f(t)dt 5 (2n 1 1)p with integer n implements a C-Phase gate,
because w11 5 w01 1 w10 2 #f(t)dt. This method of realizing a
C-Phase gate by adiabatically using the avoided crossing between
computational and non-computational states is generally applicable
to qubit implementations with finite anharmonicity, such as trans-
mons12 or phase qubits13. A similar approach involving higher excita-
tion levels but with non-adiabatic pulses was previously proposed29.
The negative anharmonicity permits the phase gate at point II to
occur before the onset of transverse coupling at point III.

Control of f by two orders of magnitude provides an excellent on-
off ratio for the C-Phase gate. Measurements of f obtained from
spectroscopy and from time-domain experiments show very good
agreement (Fig. 2c). The time-domain method measures the differ-
ence in the precession frequency of QL in two Ramsey-style experi-
ments, where a VR-pulse of varying duration (0–100 ns) is inserted
between p/2 rotations of QL, with QR either in the ground state j0æ or
excited into state j1æ. Using the time-domain approach, we measure a
residual f/2p< 1.2 MHz at point I (star in Fig. 2c). The theoretical f
obtained by numerical diagonalization shows reasonable agreement
with the data, except for a scale factor that is probably due to higher
modes of the cavity25, not included in the calculation.

The controlled phase interaction allows universal two-qubit gates.
As an example, we produce entangled states on demand (Fig. 3). The
pulse sequence in Fig. 3a generates any of the four Bell states,
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depending on the choice of C-Phase gate cUij applied

(cUij l, rj i~ {1ð Þdil djr l, rj i, where d is Kronecker’s delta). We achieve
#f(t)dt 5p by tuning the amplitude of a 30 ns VR-pulse close to point
II and back. During the pulse, QR acquires a large dynamical phase
w01 < 260p. The four cUij gates differ by whether w01 and w10 are
even or odd multiples of p. We tune w01 over a 2p range by adjusting
the rising and falling edges of the pulse, and w10 by varying the
amplitude of a simultaneous weak VL-pulse (Supplementary Fig. 3).
The conditional phase #f(t)dt is largely independent of these two
adjustments.

To detect the entanglement, we reconstruct the two-qubit density
matrix r by quantum state tomography using joint dispersive read-
out9,22,24. A pulsed measurement of the homodyne voltage VH mea-
sures the operator:
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Operation in the strong-dispersive regime23,24 makes the three con-
stant coefficients have approximately the same magnitude,
jb12j< jb1j, jb2j, enhancing sensitivity to two-qubit correlations. A
complete set of 15 linearly independent operators is built using sin-
gle-qubit rotations before measuring M. An ensemble average of each
operator is obtained by executing the sequence in Fig. 3a 450,000
times. The 15 average values are then input to a maximum-likelihood
estimator of r (Supplementary Information).

The inferred density matrices rml reveal in all four cases (Fig. 3b–e)
a high degree of two-qubit entanglement, which we quantify using
concurrence30, C. Values are listed in Fig. 3 legend, along with the
metrics of purity P(r) 5 Tr(r2) and fidelity to the target state jyæ,
F(r, y) 5 Æyjrjyæ. Note that there are several common definitions of
fidelity in the literature, and our definition is the square of the fidelity
used in refs 18 and 24. The quoted values significantly extend the state
of the art for solid-state entanglement18, and provide evidence that we
have a high-fidelity universal set of two-qubit gates.

One- and two-qubit gates can be concatenated to realize simple
algorithms, such as Grover’s quantum search1,2 shown in Fig. 4.
Given a function f(x) on the two-bit set x[ 00, 01, 10, 11f g such that
f(x) 5 0 except at some x0, where f(x0) 5 1, this well-known algo-
rithm can determine x0 with a single call of an oracle O that encodes

Figure 1 | Two-qubit cQED device, and cavity/qubit characterization.
a, Optical micrograph of four-port device with a coplanar waveguide cavity
bus coupling transmon qubits QL and QR (coloured red and blue in insets),
and local flux-bias lines providing fast qubit tuning. Microwave pulses at the
qubit transition frequencies fL and fR drive single-qubit rotations, and a
pulsed measurement of the cavity homodyne voltage VH (at frequency fC)
provides two-qubit readout. The flux-bias lines (bottom-left and top-right
ports) are coplanar waveguides with short-circuit termination next to their
target qubit. The termination geometry allows currents (IL and IR) on the
lines to couple flux through the split junctions (b, inset). b, Grey-scale

images of cavity transmission and of qubit spectroscopy as a function of VR,
showing local tuning of QR across the avoided crossing with QL (point III)
and across the vacuum Rabi splitting with the cavity (point IV). Semi-
transparent lines are theoretical best fits obtained from numerical
diagonalization of a generalized Tavis–Cummings Hamiltonian28. Points I
and II are the operating points of the processor. Preparation, single-qubit
operations and measurements are performed at point I, and a C-Phase gate is
achieved by pulsing into point II. Numerals indicate excitation level of QL

(red) and QR (blue) in the spectroscopy at point I.
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where!rm ! !r "!m is the detuning of the measurement
drive from the resonator frequency. The cavity pulls !1 ¼
"1 MHz and !2 ¼ "1:5 MHz are determined by the
detuning !1;2, the coupling strength g1;2, and the design
parameters of the qubit [29]. The last term in Eq. (1)
models the measurement drive with amplitude "ðtÞ.

The operator !̂ ! !1#̂z1 þ !2#̂z2, which describes the
dispersive shift of the resonator frequency, is linear in both
qubit states. It does not contain two-qubit terms like #̂z1#̂z2

from which information about the qubit-qubit correlations
could be obtained. However, in circuit QED, instead of
measuring frequency shifts directly, we record quadrature
amplitudes of microwave transmission through the resona-
tor which depend nonlinearly on these shifts. The average
values of the field quadratures hÎðtÞi ¼ ½$̂ðtÞðây þ âÞ( and
hQ̂ðtÞi ¼ iTr½$̂ðtÞðây " âÞ( are determined from the am-
plified voltage signal at the resonator output in a homodyne
measurement, where $̂ðtÞ denotes the state of both qubits
and resonator field.

These expressions can be evaluated by assuming an
initially separable state $̂ð0Þ ¼ j0ih0j ) $̂qð0Þ for the qu-

bits [$̂qð0Þ] and the resonator [j0ih0j]. Taking $̂qð0Þ ¼P
#;#0p##0ð0Þj#ih#0j, with # ¼ fee; eg; ge; ggg, the com-

bined qubits-resonator state at time t under Eq. (1) and
cavity damping can be expressed as $̂ðtÞ ¼P

#;#0p##0ðtÞj#%#ih#0%#0 j [33]. In this expression, %# is
the coherent state amplitude given that the qubits are in
state j#i and satisfies _%# ¼ "ið!rm þ h#j!̂j#iÞ%# "
i"" &%#=2. Since this is a quantum nondemolition mea-

surement [27], p##ðtÞ ¼ p##ð0Þ, and the off-diagonal
terms p##0ðtÞ contain an ac-Stark shift and dephasing,
both induced by the measurement.
Taking the trace on the resonator space yields

hÎðtÞi; hQ̂ðtÞi ¼ Trq½$̂qð0ÞM̂I;QðtÞ(, where M̂I;QðtÞ ¼P
#h%#ðtÞjÎ; Q̂j%#ðtÞij#ih#j and Trq denotes the partial

trace over the qubits. In the steady state we find

M̂ I ¼ ""
2ð!rm þ !̂Þ

ð!rm þ !̂Þ2 þ ð&=2Þ2 ; (2)

M̂ Q ¼ ""
&

ð!rm þ !̂Þ2 þ ð&=2Þ2 ; (3)

demonstrating that the measurement operators are non-
linear functions of !̂. Thus, M̂I;Q comprises in general
also two-qubit correlation terms proportional to #̂z1#̂z2,
which allow one to reconstruct the full two-qubit state.
In our experiments the phase of the measurement mi-

crowave at frequency !rm ¼ ð!1 þ !2Þ is adjusted such
that theQ quadrature of the transmitted signal carries most
of the signal when both qubits are in the ground state. The
corresponding measurement operator can be expressed as

M̂ ¼ 1
4ð'00îdþ '10#̂z1 þ '01#̂z2 þ '11#̂z1#̂z2Þ; (4)

with 'ij ¼ %"" þ ð"1Þj%"þ þ ð"1Þi%þ" þ
ð"1Þiþj%þþ and

%** ¼ "&fð&=2Þ2 þ ð!rm * !1 * !2Þ2g"1=2 (5)

representing the qubit state dependent Q-quadrature am-
plitudes of the resonator field in the steady-state limit and
for an infinite qubit lifetime [Fig. 2(a)].
Since we operate in a regime where the qubit relaxation

cannot be neglected, the steady-state expression is of lim-
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FIG. 2 (color online). (a) Q quadrature of the resonator field
for the qubits in states gg, eg, ge, and ee as a function of the
detuning !rm. Tomography measurements have been performed
at !rm ¼ ð!1 þ !2Þ indicated by an arrow. (b) Measured (data
points) time evolution of the Q quadrature for the indicated
initial states compared to numerically calculated responses (solid
lines). All parameters have been determined in independent
measurements.
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FIG. 1. Schematic of the experimental setup with two qubits
coupled via the capacitances Cg to a microwave resonator
operated at a temperature of about 20 mK. The transition
frequencies of the qubits are adjusted by external fluxes "1

and "2. The resonator-qubit system is probed through the input
and output capacitances Cin and Cout, respectively, by a micro-
wave signal at frequency !m. Additionally, local control of the
qubits is implemented by capacitively coupled signals !d1 and
!d2, which are phase and amplitude modulated using in-phase/
quadrature (I/Q) mixers. The output signal is detected in a
homodyne measurement at room temperature.
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levels, producing a frequency shift f/2p of the lower branch with
respect to the sum fL 1 fR, in good agreement with a numerical dia-
gonalization of the generalized Tavis–Cummings Hamiltonian28 (see
Methods).

This shift is the mechanism of our conditional phase gate. Flux
pulses, adiabatic with respect to the j1, 1æ « j0, 2æ avoided crossing,
produce phase gates
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in the computational Hilbert space. Here, wlr 5 2p#dflr(t)dt is the
dynamical phase acquired by jl, ræ, and dflr is the deviation of flr from
its value at point I. A VR pulse into point II such that
#f(t)dt 5 (2n 1 1)p with integer n implements a C-Phase gate,
because w11 5 w01 1 w10 2 #f(t)dt. This method of realizing a
C-Phase gate by adiabatically using the avoided crossing between
computational and non-computational states is generally applicable
to qubit implementations with finite anharmonicity, such as trans-
mons12 or phase qubits13. A similar approach involving higher excita-
tion levels but with non-adiabatic pulses was previously proposed29.
The negative anharmonicity permits the phase gate at point II to
occur before the onset of transverse coupling at point III.

Control of f by two orders of magnitude provides an excellent on-
off ratio for the C-Phase gate. Measurements of f obtained from
spectroscopy and from time-domain experiments show very good
agreement (Fig. 2c). The time-domain method measures the differ-
ence in the precession frequency of QL in two Ramsey-style experi-
ments, where a VR-pulse of varying duration (0–100 ns) is inserted
between p/2 rotations of QL, with QR either in the ground state j0æ or
excited into state j1æ. Using the time-domain approach, we measure a
residual f/2p< 1.2 MHz at point I (star in Fig. 2c). The theoretical f
obtained by numerical diagonalization shows reasonable agreement
with the data, except for a scale factor that is probably due to higher
modes of the cavity25, not included in the calculation.

The controlled phase interaction allows universal two-qubit gates.
As an example, we produce entangled states on demand (Fig. 3). The
pulse sequence in Fig. 3a generates any of the four Bell states,
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depending on the choice of C-Phase gate cUij applied

(cUij l, rj i~ {1ð Þdil djr l, rj i, where d is Kronecker’s delta). We achieve
#f(t)dt 5p by tuning the amplitude of a 30 ns VR-pulse close to point
II and back. During the pulse, QR acquires a large dynamical phase
w01 < 260p. The four cUij gates differ by whether w01 and w10 are
even or odd multiples of p. We tune w01 over a 2p range by adjusting
the rising and falling edges of the pulse, and w10 by varying the
amplitude of a simultaneous weak VL-pulse (Supplementary Fig. 3).
The conditional phase #f(t)dt is largely independent of these two
adjustments.

To detect the entanglement, we reconstruct the two-qubit density
matrix r by quantum state tomography using joint dispersive read-
out9,22,24. A pulsed measurement of the homodyne voltage VH mea-
sures the operator:

M~b1sL
z zb2sR

z zb12sL
z6sR
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Operation in the strong-dispersive regime23,24 makes the three con-
stant coefficients have approximately the same magnitude,
jb12j< jb1j, jb2j, enhancing sensitivity to two-qubit correlations. A
complete set of 15 linearly independent operators is built using sin-
gle-qubit rotations before measuring M. An ensemble average of each
operator is obtained by executing the sequence in Fig. 3a 450,000
times. The 15 average values are then input to a maximum-likelihood
estimator of r (Supplementary Information).

The inferred density matrices rml reveal in all four cases (Fig. 3b–e)
a high degree of two-qubit entanglement, which we quantify using
concurrence30, C. Values are listed in Fig. 3 legend, along with the
metrics of purity P(r) 5 Tr(r2) and fidelity to the target state jyæ,
F(r, y) 5 Æyjrjyæ. Note that there are several common definitions of
fidelity in the literature, and our definition is the square of the fidelity
used in refs 18 and 24. The quoted values significantly extend the state
of the art for solid-state entanglement18, and provide evidence that we
have a high-fidelity universal set of two-qubit gates.

One- and two-qubit gates can be concatenated to realize simple
algorithms, such as Grover’s quantum search1,2 shown in Fig. 4.
Given a function f(x) on the two-bit set x[ 00, 01, 10, 11f g such that
f(x) 5 0 except at some x0, where f(x0) 5 1, this well-known algo-
rithm can determine x0 with a single call of an oracle O that encodes

Figure 1 | Two-qubit cQED device, and cavity/qubit characterization.
a, Optical micrograph of four-port device with a coplanar waveguide cavity
bus coupling transmon qubits QL and QR (coloured red and blue in insets),
and local flux-bias lines providing fast qubit tuning. Microwave pulses at the
qubit transition frequencies fL and fR drive single-qubit rotations, and a
pulsed measurement of the cavity homodyne voltage VH (at frequency fC)
provides two-qubit readout. The flux-bias lines (bottom-left and top-right
ports) are coplanar waveguides with short-circuit termination next to their
target qubit. The termination geometry allows currents (IL and IR) on the
lines to couple flux through the split junctions (b, inset). b, Grey-scale

images of cavity transmission and of qubit spectroscopy as a function of VR,
showing local tuning of QR across the avoided crossing with QL (point III)
and across the vacuum Rabi splitting with the cavity (point IV). Semi-
transparent lines are theoretical best fits obtained from numerical
diagonalization of a generalized Tavis–Cummings Hamiltonian28. Points I
and II are the operating points of the processor. Preparation, single-qubit
operations and measurements are performed at point I, and a C-Phase gate is
achieved by pulsing into point II. Numerals indicate excitation level of QL

(red) and QR (blue) in the spectroscopy at point I.
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levels, producing a frequency shift f/2p of the lower branch with
respect to the sum fL 1 fR, in good agreement with a numerical dia-
gonalization of the generalized Tavis–Cummings Hamiltonian28 (see
Methods).

This shift is the mechanism of our conditional phase gate. Flux
pulses, adiabatic with respect to the j1, 1æ « j0, 2æ avoided crossing,
produce phase gates

U~

1 0 0 0
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0 0 0 eiw11

0
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1
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in the computational Hilbert space. Here, wlr 5 2p#dflr(t)dt is the
dynamical phase acquired by jl, ræ, and dflr is the deviation of flr from
its value at point I. A VR pulse into point II such that
#f(t)dt 5 (2n 1 1)p with integer n implements a C-Phase gate,
because w11 5 w01 1 w10 2 #f(t)dt. This method of realizing a
C-Phase gate by adiabatically using the avoided crossing between
computational and non-computational states is generally applicable
to qubit implementations with finite anharmonicity, such as trans-
mons12 or phase qubits13. A similar approach involving higher excita-
tion levels but with non-adiabatic pulses was previously proposed29.
The negative anharmonicity permits the phase gate at point II to
occur before the onset of transverse coupling at point III.

Control of f by two orders of magnitude provides an excellent on-
off ratio for the C-Phase gate. Measurements of f obtained from
spectroscopy and from time-domain experiments show very good
agreement (Fig. 2c). The time-domain method measures the differ-
ence in the precession frequency of QL in two Ramsey-style experi-
ments, where a VR-pulse of varying duration (0–100 ns) is inserted
between p/2 rotations of QL, with QR either in the ground state j0æ or
excited into state j1æ. Using the time-domain approach, we measure a
residual f/2p< 1.2 MHz at point I (star in Fig. 2c). The theoretical f
obtained by numerical diagonalization shows reasonable agreement
with the data, except for a scale factor that is probably due to higher
modes of the cavity25, not included in the calculation.

The controlled phase interaction allows universal two-qubit gates.
As an example, we produce entangled states on demand (Fig. 3). The
pulse sequence in Fig. 3a generates any of the four Bell states,
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~ 1ffiffi
2
p 0, 0j i+ 1, 1j ið Þ W+

!! "
~ 1ffiffi

2
p 0, 1j i+ 1, 0j ið Þ

depending on the choice of C-Phase gate cUij applied

(cUij l, rj i~ {1ð Þdil djr l, rj i, where d is Kronecker’s delta). We achieve
#f(t)dt 5p by tuning the amplitude of a 30 ns VR-pulse close to point
II and back. During the pulse, QR acquires a large dynamical phase
w01 < 260p. The four cUij gates differ by whether w01 and w10 are
even or odd multiples of p. We tune w01 over a 2p range by adjusting
the rising and falling edges of the pulse, and w10 by varying the
amplitude of a simultaneous weak VL-pulse (Supplementary Fig. 3).
The conditional phase #f(t)dt is largely independent of these two
adjustments.

To detect the entanglement, we reconstruct the two-qubit density
matrix r by quantum state tomography using joint dispersive read-
out9,22,24. A pulsed measurement of the homodyne voltage VH mea-
sures the operator:

M~b1sL
z zb2sR

z zb12sL
z6sR

z

Operation in the strong-dispersive regime23,24 makes the three con-
stant coefficients have approximately the same magnitude,
jb12j< jb1j, jb2j, enhancing sensitivity to two-qubit correlations. A
complete set of 15 linearly independent operators is built using sin-
gle-qubit rotations before measuring M. An ensemble average of each
operator is obtained by executing the sequence in Fig. 3a 450,000
times. The 15 average values are then input to a maximum-likelihood
estimator of r (Supplementary Information).

The inferred density matrices rml reveal in all four cases (Fig. 3b–e)
a high degree of two-qubit entanglement, which we quantify using
concurrence30, C. Values are listed in Fig. 3 legend, along with the
metrics of purity P(r) 5 Tr(r2) and fidelity to the target state jyæ,
F(r, y) 5 Æyjrjyæ. Note that there are several common definitions of
fidelity in the literature, and our definition is the square of the fidelity
used in refs 18 and 24. The quoted values significantly extend the state
of the art for solid-state entanglement18, and provide evidence that we
have a high-fidelity universal set of two-qubit gates.

One- and two-qubit gates can be concatenated to realize simple
algorithms, such as Grover’s quantum search1,2 shown in Fig. 4.
Given a function f(x) on the two-bit set x[ 00, 01, 10, 11f g such that
f(x) 5 0 except at some x0, where f(x0) 5 1, this well-known algo-
rithm can determine x0 with a single call of an oracle O that encodes

Figure 1 | Two-qubit cQED device, and cavity/qubit characterization.
a, Optical micrograph of four-port device with a coplanar waveguide cavity
bus coupling transmon qubits QL and QR (coloured red and blue in insets),
and local flux-bias lines providing fast qubit tuning. Microwave pulses at the
qubit transition frequencies fL and fR drive single-qubit rotations, and a
pulsed measurement of the cavity homodyne voltage VH (at frequency fC)
provides two-qubit readout. The flux-bias lines (bottom-left and top-right
ports) are coplanar waveguides with short-circuit termination next to their
target qubit. The termination geometry allows currents (IL and IR) on the
lines to couple flux through the split junctions (b, inset). b, Grey-scale

images of cavity transmission and of qubit spectroscopy as a function of VR,
showing local tuning of QR across the avoided crossing with QL (point III)
and across the vacuum Rabi splitting with the cavity (point IV). Semi-
transparent lines are theoretical best fits obtained from numerical
diagonalization of a generalized Tavis–Cummings Hamiltonian28. Points I
and II are the operating points of the processor. Preparation, single-qubit
operations and measurements are performed at point I, and a C-Phase gate is
achieved by pulsing into point II. Numerals indicate excitation level of QL

(red) and QR (blue) in the spectroscopy at point I.
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levels, producing a frequency shift f/2p of the lower branch with
respect to the sum fL 1 fR, in good agreement with a numerical dia-
gonalization of the generalized Tavis–Cummings Hamiltonian28 (see
Methods).

This shift is the mechanism of our conditional phase gate. Flux
pulses, adiabatic with respect to the j1, 1æ « j0, 2æ avoided crossing,
produce phase gates

U~

1 0 0 0

0 eiw01 0 0

0 0 eiw10 0

0 0 0 eiw11

0
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1

CCCA

in the computational Hilbert space. Here, wlr 5 2p#dflr(t)dt is the
dynamical phase acquired by jl, ræ, and dflr is the deviation of flr from
its value at point I. A VR pulse into point II such that
#f(t)dt 5 (2n 1 1)p with integer n implements a C-Phase gate,
because w11 5 w01 1 w10 2 #f(t)dt. This method of realizing a
C-Phase gate by adiabatically using the avoided crossing between
computational and non-computational states is generally applicable
to qubit implementations with finite anharmonicity, such as trans-
mons12 or phase qubits13. A similar approach involving higher excita-
tion levels but with non-adiabatic pulses was previously proposed29.
The negative anharmonicity permits the phase gate at point II to
occur before the onset of transverse coupling at point III.

Control of f by two orders of magnitude provides an excellent on-
off ratio for the C-Phase gate. Measurements of f obtained from
spectroscopy and from time-domain experiments show very good
agreement (Fig. 2c). The time-domain method measures the differ-
ence in the precession frequency of QL in two Ramsey-style experi-
ments, where a VR-pulse of varying duration (0–100 ns) is inserted
between p/2 rotations of QL, with QR either in the ground state j0æ or
excited into state j1æ. Using the time-domain approach, we measure a
residual f/2p< 1.2 MHz at point I (star in Fig. 2c). The theoretical f
obtained by numerical diagonalization shows reasonable agreement
with the data, except for a scale factor that is probably due to higher
modes of the cavity25, not included in the calculation.

The controlled phase interaction allows universal two-qubit gates.
As an example, we produce entangled states on demand (Fig. 3). The
pulse sequence in Fig. 3a generates any of the four Bell states,
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~ 1ffiffi

2
p 0, 1j i+ 1, 0j ið Þ

depending on the choice of C-Phase gate cUij applied

(cUij l, rj i~ {1ð Þdil djr l, rj i, where d is Kronecker’s delta). We achieve
#f(t)dt 5p by tuning the amplitude of a 30 ns VR-pulse close to point
II and back. During the pulse, QR acquires a large dynamical phase
w01 < 260p. The four cUij gates differ by whether w01 and w10 are
even or odd multiples of p. We tune w01 over a 2p range by adjusting
the rising and falling edges of the pulse, and w10 by varying the
amplitude of a simultaneous weak VL-pulse (Supplementary Fig. 3).
The conditional phase #f(t)dt is largely independent of these two
adjustments.

To detect the entanglement, we reconstruct the two-qubit density
matrix r by quantum state tomography using joint dispersive read-
out9,22,24. A pulsed measurement of the homodyne voltage VH mea-
sures the operator:

M~b1sL
z zb2sR

z zb12sL
z6sR

z

Operation in the strong-dispersive regime23,24 makes the three con-
stant coefficients have approximately the same magnitude,
jb12j< jb1j, jb2j, enhancing sensitivity to two-qubit correlations. A
complete set of 15 linearly independent operators is built using sin-
gle-qubit rotations before measuring M. An ensemble average of each
operator is obtained by executing the sequence in Fig. 3a 450,000
times. The 15 average values are then input to a maximum-likelihood
estimator of r (Supplementary Information).

The inferred density matrices rml reveal in all four cases (Fig. 3b–e)
a high degree of two-qubit entanglement, which we quantify using
concurrence30, C. Values are listed in Fig. 3 legend, along with the
metrics of purity P(r) 5 Tr(r2) and fidelity to the target state jyæ,
F(r, y) 5 Æyjrjyæ. Note that there are several common definitions of
fidelity in the literature, and our definition is the square of the fidelity
used in refs 18 and 24. The quoted values significantly extend the state
of the art for solid-state entanglement18, and provide evidence that we
have a high-fidelity universal set of two-qubit gates.

One- and two-qubit gates can be concatenated to realize simple
algorithms, such as Grover’s quantum search1,2 shown in Fig. 4.
Given a function f(x) on the two-bit set x[ 00, 01, 10, 11f g such that
f(x) 5 0 except at some x0, where f(x0) 5 1, this well-known algo-
rithm can determine x0 with a single call of an oracle O that encodes

Figure 1 | Two-qubit cQED device, and cavity/qubit characterization.
a, Optical micrograph of four-port device with a coplanar waveguide cavity
bus coupling transmon qubits QL and QR (coloured red and blue in insets),
and local flux-bias lines providing fast qubit tuning. Microwave pulses at the
qubit transition frequencies fL and fR drive single-qubit rotations, and a
pulsed measurement of the cavity homodyne voltage VH (at frequency fC)
provides two-qubit readout. The flux-bias lines (bottom-left and top-right
ports) are coplanar waveguides with short-circuit termination next to their
target qubit. The termination geometry allows currents (IL and IR) on the
lines to couple flux through the split junctions (b, inset). b, Grey-scale

images of cavity transmission and of qubit spectroscopy as a function of VR,
showing local tuning of QR across the avoided crossing with QL (point III)
and across the vacuum Rabi splitting with the cavity (point IV). Semi-
transparent lines are theoretical best fits obtained from numerical
diagonalization of a generalized Tavis–Cummings Hamiltonian28. Points I
and II are the operating points of the processor. Preparation, single-qubit
operations and measurements are performed at point I, and a C-Phase gate is
achieved by pulsing into point II. Numerals indicate excitation level of QL

(red) and QR (blue) in the spectroscopy at point I.
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levels, producing a frequency shift f/2p of the lower branch with
respect to the sum fL 1 fR, in good agreement with a numerical dia-
gonalization of the generalized Tavis–Cummings Hamiltonian28 (see
Methods).

This shift is the mechanism of our conditional phase gate. Flux
pulses, adiabatic with respect to the j1, 1æ « j0, 2æ avoided crossing,
produce phase gates
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0 0 0 eiw11

0
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1
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in the computational Hilbert space. Here, wlr 5 2p#dflr(t)dt is the
dynamical phase acquired by jl, ræ, and dflr is the deviation of flr from
its value at point I. A VR pulse into point II such that
#f(t)dt 5 (2n 1 1)p with integer n implements a C-Phase gate,
because w11 5 w01 1 w10 2 #f(t)dt. This method of realizing a
C-Phase gate by adiabatically using the avoided crossing between
computational and non-computational states is generally applicable
to qubit implementations with finite anharmonicity, such as trans-
mons12 or phase qubits13. A similar approach involving higher excita-
tion levels but with non-adiabatic pulses was previously proposed29.
The negative anharmonicity permits the phase gate at point II to
occur before the onset of transverse coupling at point III.

Control of f by two orders of magnitude provides an excellent on-
off ratio for the C-Phase gate. Measurements of f obtained from
spectroscopy and from time-domain experiments show very good
agreement (Fig. 2c). The time-domain method measures the differ-
ence in the precession frequency of QL in two Ramsey-style experi-
ments, where a VR-pulse of varying duration (0–100 ns) is inserted
between p/2 rotations of QL, with QR either in the ground state j0æ or
excited into state j1æ. Using the time-domain approach, we measure a
residual f/2p< 1.2 MHz at point I (star in Fig. 2c). The theoretical f
obtained by numerical diagonalization shows reasonable agreement
with the data, except for a scale factor that is probably due to higher
modes of the cavity25, not included in the calculation.

The controlled phase interaction allows universal two-qubit gates.
As an example, we produce entangled states on demand (Fig. 3). The
pulse sequence in Fig. 3a generates any of the four Bell states,

Y+
!! "

~ 1ffiffi
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2
p 0, 1j i+ 1, 0j ið Þ

depending on the choice of C-Phase gate cUij applied

(cUij l, rj i~ {1ð Þdil djr l, rj i, where d is Kronecker’s delta). We achieve
#f(t)dt 5p by tuning the amplitude of a 30 ns VR-pulse close to point
II and back. During the pulse, QR acquires a large dynamical phase
w01 < 260p. The four cUij gates differ by whether w01 and w10 are
even or odd multiples of p. We tune w01 over a 2p range by adjusting
the rising and falling edges of the pulse, and w10 by varying the
amplitude of a simultaneous weak VL-pulse (Supplementary Fig. 3).
The conditional phase #f(t)dt is largely independent of these two
adjustments.

To detect the entanglement, we reconstruct the two-qubit density
matrix r by quantum state tomography using joint dispersive read-
out9,22,24. A pulsed measurement of the homodyne voltage VH mea-
sures the operator:

M~b1sL
z zb2sR

z zb12sL
z6sR

z

Operation in the strong-dispersive regime23,24 makes the three con-
stant coefficients have approximately the same magnitude,
jb12j< jb1j, jb2j, enhancing sensitivity to two-qubit correlations. A
complete set of 15 linearly independent operators is built using sin-
gle-qubit rotations before measuring M. An ensemble average of each
operator is obtained by executing the sequence in Fig. 3a 450,000
times. The 15 average values are then input to a maximum-likelihood
estimator of r (Supplementary Information).

The inferred density matrices rml reveal in all four cases (Fig. 3b–e)
a high degree of two-qubit entanglement, which we quantify using
concurrence30, C. Values are listed in Fig. 3 legend, along with the
metrics of purity P(r) 5 Tr(r2) and fidelity to the target state jyæ,
F(r, y) 5 Æyjrjyæ. Note that there are several common definitions of
fidelity in the literature, and our definition is the square of the fidelity
used in refs 18 and 24. The quoted values significantly extend the state
of the art for solid-state entanglement18, and provide evidence that we
have a high-fidelity universal set of two-qubit gates.

One- and two-qubit gates can be concatenated to realize simple
algorithms, such as Grover’s quantum search1,2 shown in Fig. 4.
Given a function f(x) on the two-bit set x[ 00, 01, 10, 11f g such that
f(x) 5 0 except at some x0, where f(x0) 5 1, this well-known algo-
rithm can determine x0 with a single call of an oracle O that encodes

Figure 1 | Two-qubit cQED device, and cavity/qubit characterization.
a, Optical micrograph of four-port device with a coplanar waveguide cavity
bus coupling transmon qubits QL and QR (coloured red and blue in insets),
and local flux-bias lines providing fast qubit tuning. Microwave pulses at the
qubit transition frequencies fL and fR drive single-qubit rotations, and a
pulsed measurement of the cavity homodyne voltage VH (at frequency fC)
provides two-qubit readout. The flux-bias lines (bottom-left and top-right
ports) are coplanar waveguides with short-circuit termination next to their
target qubit. The termination geometry allows currents (IL and IR) on the
lines to couple flux through the split junctions (b, inset). b, Grey-scale

images of cavity transmission and of qubit spectroscopy as a function of VR,
showing local tuning of QR across the avoided crossing with QL (point III)
and across the vacuum Rabi splitting with the cavity (point IV). Semi-
transparent lines are theoretical best fits obtained from numerical
diagonalization of a generalized Tavis–Cummings Hamiltonian28. Points I
and II are the operating points of the processor. Preparation, single-qubit
operations and measurements are performed at point I, and a C-Phase gate is
achieved by pulsing into point II. Numerals indicate excitation level of QL

(red) and QR (blue) in the spectroscopy at point I.
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levels, producing a frequency shift f/2p of the lower branch with
respect to the sum fL 1 fR, in good agreement with a numerical dia-
gonalization of the generalized Tavis–Cummings Hamiltonian28 (see
Methods).

This shift is the mechanism of our conditional phase gate. Flux
pulses, adiabatic with respect to the j1, 1æ « j0, 2æ avoided crossing,
produce phase gates
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in the computational Hilbert space. Here, wlr 5 2p#dflr(t)dt is the
dynamical phase acquired by jl, ræ, and dflr is the deviation of flr from
its value at point I. A VR pulse into point II such that
#f(t)dt 5 (2n 1 1)p with integer n implements a C-Phase gate,
because w11 5 w01 1 w10 2 #f(t)dt. This method of realizing a
C-Phase gate by adiabatically using the avoided crossing between
computational and non-computational states is generally applicable
to qubit implementations with finite anharmonicity, such as trans-
mons12 or phase qubits13. A similar approach involving higher excita-
tion levels but with non-adiabatic pulses was previously proposed29.
The negative anharmonicity permits the phase gate at point II to
occur before the onset of transverse coupling at point III.

Control of f by two orders of magnitude provides an excellent on-
off ratio for the C-Phase gate. Measurements of f obtained from
spectroscopy and from time-domain experiments show very good
agreement (Fig. 2c). The time-domain method measures the differ-
ence in the precession frequency of QL in two Ramsey-style experi-
ments, where a VR-pulse of varying duration (0–100 ns) is inserted
between p/2 rotations of QL, with QR either in the ground state j0æ or
excited into state j1æ. Using the time-domain approach, we measure a
residual f/2p< 1.2 MHz at point I (star in Fig. 2c). The theoretical f
obtained by numerical diagonalization shows reasonable agreement
with the data, except for a scale factor that is probably due to higher
modes of the cavity25, not included in the calculation.

The controlled phase interaction allows universal two-qubit gates.
As an example, we produce entangled states on demand (Fig. 3). The
pulse sequence in Fig. 3a generates any of the four Bell states,
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depending on the choice of C-Phase gate cUij applied

(cUij l, rj i~ {1ð Þdil djr l, rj i, where d is Kronecker’s delta). We achieve
#f(t)dt 5p by tuning the amplitude of a 30 ns VR-pulse close to point
II and back. During the pulse, QR acquires a large dynamical phase
w01 < 260p. The four cUij gates differ by whether w01 and w10 are
even or odd multiples of p. We tune w01 over a 2p range by adjusting
the rising and falling edges of the pulse, and w10 by varying the
amplitude of a simultaneous weak VL-pulse (Supplementary Fig. 3).
The conditional phase #f(t)dt is largely independent of these two
adjustments.

To detect the entanglement, we reconstruct the two-qubit density
matrix r by quantum state tomography using joint dispersive read-
out9,22,24. A pulsed measurement of the homodyne voltage VH mea-
sures the operator:

M~b1sL
z zb2sR

z zb12sL
z6sR

z

Operation in the strong-dispersive regime23,24 makes the three con-
stant coefficients have approximately the same magnitude,
jb12j< jb1j, jb2j, enhancing sensitivity to two-qubit correlations. A
complete set of 15 linearly independent operators is built using sin-
gle-qubit rotations before measuring M. An ensemble average of each
operator is obtained by executing the sequence in Fig. 3a 450,000
times. The 15 average values are then input to a maximum-likelihood
estimator of r (Supplementary Information).

The inferred density matrices rml reveal in all four cases (Fig. 3b–e)
a high degree of two-qubit entanglement, which we quantify using
concurrence30, C. Values are listed in Fig. 3 legend, along with the
metrics of purity P(r) 5 Tr(r2) and fidelity to the target state jyæ,
F(r, y) 5 Æyjrjyæ. Note that there are several common definitions of
fidelity in the literature, and our definition is the square of the fidelity
used in refs 18 and 24. The quoted values significantly extend the state
of the art for solid-state entanglement18, and provide evidence that we
have a high-fidelity universal set of two-qubit gates.

One- and two-qubit gates can be concatenated to realize simple
algorithms, such as Grover’s quantum search1,2 shown in Fig. 4.
Given a function f(x) on the two-bit set x[ 00, 01, 10, 11f g such that
f(x) 5 0 except at some x0, where f(x0) 5 1, this well-known algo-
rithm can determine x0 with a single call of an oracle O that encodes

Figure 1 | Two-qubit cQED device, and cavity/qubit characterization.
a, Optical micrograph of four-port device with a coplanar waveguide cavity
bus coupling transmon qubits QL and QR (coloured red and blue in insets),
and local flux-bias lines providing fast qubit tuning. Microwave pulses at the
qubit transition frequencies fL and fR drive single-qubit rotations, and a
pulsed measurement of the cavity homodyne voltage VH (at frequency fC)
provides two-qubit readout. The flux-bias lines (bottom-left and top-right
ports) are coplanar waveguides with short-circuit termination next to their
target qubit. The termination geometry allows currents (IL and IR) on the
lines to couple flux through the split junctions (b, inset). b, Grey-scale

images of cavity transmission and of qubit spectroscopy as a function of VR,
showing local tuning of QR across the avoided crossing with QL (point III)
and across the vacuum Rabi splitting with the cavity (point IV). Semi-
transparent lines are theoretical best fits obtained from numerical
diagonalization of a generalized Tavis–Cummings Hamiltonian28. Points I
and II are the operating points of the processor. Preparation, single-qubit
operations and measurements are performed at point I, and a C-Phase gate is
achieved by pulsing into point II. Numerals indicate excitation level of QL

(red) and QR (blue) in the spectroscopy at point I.
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f(x) in a quantum phase, O jxæ 5 (–1)f(x)jxæ. The oracle for x0 5 ij is
the C-Phase gate cUij.

We can examine the functioning of the algorithm by interrupting it
after each step and performing state tomography. Figure 4b–g shows
all the features of a quantum processor, namely the use of maximally
superposed states to exploit quantum parallelism (Fig. 4c), the encod-
ing of information in the entanglement between qubits (Fig. 4d, e),
and the interference producing an answer represented in a final

computational basis state. The fidelity of the final state (Fig. 4g) to
the expected output (j1, 0æ for the case O 5 cU10 shown) is 85%.
Similar performance is obtained for the other three oracles (Table 1).

We have also implemented the Deutsch–Jozsa algorithm1,2. The
two-qubit version of this algorithm determines whether an unknown
function fi(x), mapping a one-bit input to a one-bit output, is con-
stant (f0(x) 5 0 or f1(x) 5 1) or balanced (f2(x) 5 x or f3(x) 5 1 – x)
with a single call of the function. The algorithm applies the function
once to a superposition of the two possible inputs and uses quantum
phase kick-back2 to encode the result in the final state of one qubit
(QL) while leaving the other untouched (QR). The gate sequence
realizing the algorithm and the output tomographs for the four cases
are shown in Supplementary Fig. 1.

The performance of both algorithms is summarized in Table 1.
Although there are undoubtedly significant systematic errors
remaining, the overall fidelity is similar to that expected from the
ratio (,100 ns/1 ms) of the total duration of gate sequences to the
qubit coherence times. The detailed error budget will be addressed in
future work using quantum process tomography.
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Figure 2 | Origin and characterization of the controlled-phase gate. a, Flux
dependence of transition frequencies from the ground state | 0, 0æ to the two-
excitation manifold. Red (blue) numerals indicate the excitation level of the
left (right) transmon for each transition. Two-tone spectroscopy
measurements12 (points) show an avoided crossing between the
computational state | 1, 1æ and the non-computational state | 0, 2æ at point II,
in good agreement with numerical diagonalization of the Hamiltonian
(dashed curves). b, This avoided crossing causes the transition frequency to
| 1, 1æ to deviate from the sum of the transition frequencies to | 0, 1æ and | 1, 0æ.
c, The coupling strength f/2p5 f01 1 f10 – f11 of the effective sL

z6sR
z

interaction, obtained both from spectroscopy (solid curve) and from time-
domain experiments (points; see text for details). Numerical diagonalization
and perturbation theory (Supplementary Information) for three-level
transmons agree reasonably with data. The perturbation calculation
diverges at the avoided crossing. Perturbation theory for two-level qubits
gives the wrong magnitude and sign for f, and demonstrates that the higher
transmon excitations are necessary for the interaction. Time-domain
measurement and theory both give f/2p< 1.2 MHz at point I. The tunability
of f over two orders of magnitude provides an excellent on-off ratio for the
two-qubit C-Phase gate.

Figure 3 | Entanglement on demand. a, Gate sequence generating two-qubit
entanglement and detection via quantum state tomography. Starting from
| 0, 0æ, simultaneous p/2 rotations on both qubits create an equal
superposition of the four computational states. A C-Phase cUij then phase
shifts | i, jæ in the superposition and produces entanglement. A final p/2
rotation on QL evolves the entangled state into one of the four Bell states
depending on the cUij applied. b–e, Real part of maximum-likelihood
density matrix rml of the entangler output for cU10, cU00, cU11 and cU01,
respectively (imaginary elements of rml are less than 0.03, 0.02, 0.07, 0.08).
Extracted metrics for the four entangler outputs include concurrence
C 5 0.88 6 0.02, 0.94 6 0.01, 0.86 6 0.02, 0.81 6 0.04, purity
P 5 0.87 6 0.02, 0.92 6 0.02, 0.88 6 0.02, 0.79 6 0.03, and fidelity to the
ideal Bell state F 5 0.91 6 0.01, 0.94 6 0.01, 0.90 6 0.01, 0.87 6 0.02. The
uncertainties correspond to the standard deviation in 16 repetitions of
generation-tomography for each entangler.
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f(x) in a quantum phase, O jxæ 5 (–1)f(x)jxæ. The oracle for x0 5 ij is
the C-Phase gate cUij.

We can examine the functioning of the algorithm by interrupting it
after each step and performing state tomography. Figure 4b–g shows
all the features of a quantum processor, namely the use of maximally
superposed states to exploit quantum parallelism (Fig. 4c), the encod-
ing of information in the entanglement between qubits (Fig. 4d, e),
and the interference producing an answer represented in a final

computational basis state. The fidelity of the final state (Fig. 4g) to
the expected output (j1, 0æ for the case O 5 cU10 shown) is 85%.
Similar performance is obtained for the other three oracles (Table 1).

We have also implemented the Deutsch–Jozsa algorithm1,2. The
two-qubit version of this algorithm determines whether an unknown
function fi(x), mapping a one-bit input to a one-bit output, is con-
stant (f0(x) 5 0 or f1(x) 5 1) or balanced (f2(x) 5 x or f3(x) 5 1 – x)
with a single call of the function. The algorithm applies the function
once to a superposition of the two possible inputs and uses quantum
phase kick-back2 to encode the result in the final state of one qubit
(QL) while leaving the other untouched (QR). The gate sequence
realizing the algorithm and the output tomographs for the four cases
are shown in Supplementary Fig. 1.

The performance of both algorithms is summarized in Table 1.
Although there are undoubtedly significant systematic errors
remaining, the overall fidelity is similar to that expected from the
ratio (,100 ns/1 ms) of the total duration of gate sequences to the
qubit coherence times. The detailed error budget will be addressed in
future work using quantum process tomography.
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Figure 2 | Origin and characterization of the controlled-phase gate. a, Flux
dependence of transition frequencies from the ground state | 0, 0æ to the two-
excitation manifold. Red (blue) numerals indicate the excitation level of the
left (right) transmon for each transition. Two-tone spectroscopy
measurements12 (points) show an avoided crossing between the
computational state | 1, 1æ and the non-computational state | 0, 2æ at point II,
in good agreement with numerical diagonalization of the Hamiltonian
(dashed curves). b, This avoided crossing causes the transition frequency to
| 1, 1æ to deviate from the sum of the transition frequencies to | 0, 1æ and | 1, 0æ.
c, The coupling strength f/2p5 f01 1 f10 – f11 of the effective sL

z6sR
z

interaction, obtained both from spectroscopy (solid curve) and from time-
domain experiments (points; see text for details). Numerical diagonalization
and perturbation theory (Supplementary Information) for three-level
transmons agree reasonably with data. The perturbation calculation
diverges at the avoided crossing. Perturbation theory for two-level qubits
gives the wrong magnitude and sign for f, and demonstrates that the higher
transmon excitations are necessary for the interaction. Time-domain
measurement and theory both give f/2p< 1.2 MHz at point I. The tunability
of f over two orders of magnitude provides an excellent on-off ratio for the
two-qubit C-Phase gate.

Figure 3 | Entanglement on demand. a, Gate sequence generating two-qubit
entanglement and detection via quantum state tomography. Starting from
| 0, 0æ, simultaneous p/2 rotations on both qubits create an equal
superposition of the four computational states. A C-Phase cUij then phase
shifts | i, jæ in the superposition and produces entanglement. A final p/2
rotation on QL evolves the entangled state into one of the four Bell states
depending on the cUij applied. b–e, Real part of maximum-likelihood
density matrix rml of the entangler output for cU10, cU00, cU11 and cU01,
respectively (imaginary elements of rml are less than 0.03, 0.02, 0.07, 0.08).
Extracted metrics for the four entangler outputs include concurrence
C 5 0.88 6 0.02, 0.94 6 0.01, 0.86 6 0.02, 0.81 6 0.04, purity
P 5 0.87 6 0.02, 0.92 6 0.02, 0.88 6 0.02, 0.79 6 0.03, and fidelity to the
ideal Bell state F 5 0.91 6 0.01, 0.94 6 0.01, 0.90 6 0.01, 0.87 6 0.02. The
uncertainties correspond to the standard deviation in 16 repetitions of
generation-tomography for each entangler.
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f(x) in a quantum phase, O jxæ 5 (–1)f(x)jxæ. The oracle for x0 5 ij is
the C-Phase gate cUij.

We can examine the functioning of the algorithm by interrupting it
after each step and performing state tomography. Figure 4b–g shows
all the features of a quantum processor, namely the use of maximally
superposed states to exploit quantum parallelism (Fig. 4c), the encod-
ing of information in the entanglement between qubits (Fig. 4d, e),
and the interference producing an answer represented in a final

computational basis state. The fidelity of the final state (Fig. 4g) to
the expected output (j1, 0æ for the case O 5 cU10 shown) is 85%.
Similar performance is obtained for the other three oracles (Table 1).

We have also implemented the Deutsch–Jozsa algorithm1,2. The
two-qubit version of this algorithm determines whether an unknown
function fi(x), mapping a one-bit input to a one-bit output, is con-
stant (f0(x) 5 0 or f1(x) 5 1) or balanced (f2(x) 5 x or f3(x) 5 1 – x)
with a single call of the function. The algorithm applies the function
once to a superposition of the two possible inputs and uses quantum
phase kick-back2 to encode the result in the final state of one qubit
(QL) while leaving the other untouched (QR). The gate sequence
realizing the algorithm and the output tomographs for the four cases
are shown in Supplementary Fig. 1.

The performance of both algorithms is summarized in Table 1.
Although there are undoubtedly significant systematic errors
remaining, the overall fidelity is similar to that expected from the
ratio (,100 ns/1 ms) of the total duration of gate sequences to the
qubit coherence times. The detailed error budget will be addressed in
future work using quantum process tomography.
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Figure 2 | Origin and characterization of the controlled-phase gate. a, Flux
dependence of transition frequencies from the ground state | 0, 0æ to the two-
excitation manifold. Red (blue) numerals indicate the excitation level of the
left (right) transmon for each transition. Two-tone spectroscopy
measurements12 (points) show an avoided crossing between the
computational state | 1, 1æ and the non-computational state | 0, 2æ at point II,
in good agreement with numerical diagonalization of the Hamiltonian
(dashed curves). b, This avoided crossing causes the transition frequency to
| 1, 1æ to deviate from the sum of the transition frequencies to | 0, 1æ and | 1, 0æ.
c, The coupling strength f/2p5 f01 1 f10 – f11 of the effective sL

z6sR
z

interaction, obtained both from spectroscopy (solid curve) and from time-
domain experiments (points; see text for details). Numerical diagonalization
and perturbation theory (Supplementary Information) for three-level
transmons agree reasonably with data. The perturbation calculation
diverges at the avoided crossing. Perturbation theory for two-level qubits
gives the wrong magnitude and sign for f, and demonstrates that the higher
transmon excitations are necessary for the interaction. Time-domain
measurement and theory both give f/2p< 1.2 MHz at point I. The tunability
of f over two orders of magnitude provides an excellent on-off ratio for the
two-qubit C-Phase gate.

Figure 3 | Entanglement on demand. a, Gate sequence generating two-qubit
entanglement and detection via quantum state tomography. Starting from
| 0, 0æ, simultaneous p/2 rotations on both qubits create an equal
superposition of the four computational states. A C-Phase cUij then phase
shifts | i, jæ in the superposition and produces entanglement. A final p/2
rotation on QL evolves the entangled state into one of the four Bell states
depending on the cUij applied. b–e, Real part of maximum-likelihood
density matrix rml of the entangler output for cU10, cU00, cU11 and cU01,
respectively (imaginary elements of rml are less than 0.03, 0.02, 0.07, 0.08).
Extracted metrics for the four entangler outputs include concurrence
C 5 0.88 6 0.02, 0.94 6 0.01, 0.86 6 0.02, 0.81 6 0.04, purity
P 5 0.87 6 0.02, 0.92 6 0.02, 0.88 6 0.02, 0.79 6 0.03, and fidelity to the
ideal Bell state F 5 0.91 6 0.01, 0.94 6 0.01, 0.90 6 0.01, 0.87 6 0.02. The
uncertainties correspond to the standard deviation in 16 repetitions of
generation-tomography for each entangler.
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f(x) in a quantum phase, O jxæ 5 (–1)f(x)jxæ. The oracle for x0 5 ij is
the C-Phase gate cUij.

We can examine the functioning of the algorithm by interrupting it
after each step and performing state tomography. Figure 4b–g shows
all the features of a quantum processor, namely the use of maximally
superposed states to exploit quantum parallelism (Fig. 4c), the encod-
ing of information in the entanglement between qubits (Fig. 4d, e),
and the interference producing an answer represented in a final

computational basis state. The fidelity of the final state (Fig. 4g) to
the expected output (j1, 0æ for the case O 5 cU10 shown) is 85%.
Similar performance is obtained for the other three oracles (Table 1).

We have also implemented the Deutsch–Jozsa algorithm1,2. The
two-qubit version of this algorithm determines whether an unknown
function fi(x), mapping a one-bit input to a one-bit output, is con-
stant (f0(x) 5 0 or f1(x) 5 1) or balanced (f2(x) 5 x or f3(x) 5 1 – x)
with a single call of the function. The algorithm applies the function
once to a superposition of the two possible inputs and uses quantum
phase kick-back2 to encode the result in the final state of one qubit
(QL) while leaving the other untouched (QR). The gate sequence
realizing the algorithm and the output tomographs for the four cases
are shown in Supplementary Fig. 1.

The performance of both algorithms is summarized in Table 1.
Although there are undoubtedly significant systematic errors
remaining, the overall fidelity is similar to that expected from the
ratio (,100 ns/1 ms) of the total duration of gate sequences to the
qubit coherence times. The detailed error budget will be addressed in
future work using quantum process tomography.
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Figure 2 | Origin and characterization of the controlled-phase gate. a, Flux
dependence of transition frequencies from the ground state | 0, 0æ to the two-
excitation manifold. Red (blue) numerals indicate the excitation level of the
left (right) transmon for each transition. Two-tone spectroscopy
measurements12 (points) show an avoided crossing between the
computational state | 1, 1æ and the non-computational state | 0, 2æ at point II,
in good agreement with numerical diagonalization of the Hamiltonian
(dashed curves). b, This avoided crossing causes the transition frequency to
| 1, 1æ to deviate from the sum of the transition frequencies to | 0, 1æ and | 1, 0æ.
c, The coupling strength f/2p5 f01 1 f10 – f11 of the effective sL

z6sR
z

interaction, obtained both from spectroscopy (solid curve) and from time-
domain experiments (points; see text for details). Numerical diagonalization
and perturbation theory (Supplementary Information) for three-level
transmons agree reasonably with data. The perturbation calculation
diverges at the avoided crossing. Perturbation theory for two-level qubits
gives the wrong magnitude and sign for f, and demonstrates that the higher
transmon excitations are necessary for the interaction. Time-domain
measurement and theory both give f/2p< 1.2 MHz at point I. The tunability
of f over two orders of magnitude provides an excellent on-off ratio for the
two-qubit C-Phase gate.

Figure 3 | Entanglement on demand. a, Gate sequence generating two-qubit
entanglement and detection via quantum state tomography. Starting from
| 0, 0æ, simultaneous p/2 rotations on both qubits create an equal
superposition of the four computational states. A C-Phase cUij then phase
shifts | i, jæ in the superposition and produces entanglement. A final p/2
rotation on QL evolves the entangled state into one of the four Bell states
depending on the cUij applied. b–e, Real part of maximum-likelihood
density matrix rml of the entangler output for cU10, cU00, cU11 and cU01,
respectively (imaginary elements of rml are less than 0.03, 0.02, 0.07, 0.08).
Extracted metrics for the four entangler outputs include concurrence
C 5 0.88 6 0.02, 0.94 6 0.01, 0.86 6 0.02, 0.81 6 0.04, purity
P 5 0.87 6 0.02, 0.92 6 0.02, 0.88 6 0.02, 0.79 6 0.03, and fidelity to the
ideal Bell state F 5 0.91 6 0.01, 0.94 6 0.01, 0.90 6 0.01, 0.87 6 0.02. The
uncertainties correspond to the standard deviation in 16 repetitions of
generation-tomography for each entangler.
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Idea:  A pulse    I      II will induce a phase shift! 

What is the phase each state picks up during this pulse?

 deviation from     
 frequency at I

30 ns

DiCarlo 2009

levels, producing a frequency shift f/2p of the lower branch with
respect to the sum fL 1 fR, in good agreement with a numerical dia-
gonalization of the generalized Tavis–Cummings Hamiltonian28 (see
Methods).

This shift is the mechanism of our conditional phase gate. Flux
pulses, adiabatic with respect to the j1, 1æ « j0, 2æ avoided crossing,
produce phase gates

U~

1 0 0 0

0 eiw01 0 0

0 0 eiw10 0

0 0 0 eiw11

0

BBB@

1

CCCA

in the computational Hilbert space. Here, wlr 5 2p#dflr(t)dt is the
dynamical phase acquired by jl, ræ, and dflr is the deviation of flr from
its value at point I. A VR pulse into point II such that
#f(t)dt 5 (2n 1 1)p with integer n implements a C-Phase gate,
because w11 5 w01 1 w10 2 #f(t)dt. This method of realizing a
C-Phase gate by adiabatically using the avoided crossing between
computational and non-computational states is generally applicable
to qubit implementations with finite anharmonicity, such as trans-
mons12 or phase qubits13. A similar approach involving higher excita-
tion levels but with non-adiabatic pulses was previously proposed29.
The negative anharmonicity permits the phase gate at point II to
occur before the onset of transverse coupling at point III.

Control of f by two orders of magnitude provides an excellent on-
off ratio for the C-Phase gate. Measurements of f obtained from
spectroscopy and from time-domain experiments show very good
agreement (Fig. 2c). The time-domain method measures the differ-
ence in the precession frequency of QL in two Ramsey-style experi-
ments, where a VR-pulse of varying duration (0–100 ns) is inserted
between p/2 rotations of QL, with QR either in the ground state j0æ or
excited into state j1æ. Using the time-domain approach, we measure a
residual f/2p< 1.2 MHz at point I (star in Fig. 2c). The theoretical f
obtained by numerical diagonalization shows reasonable agreement
with the data, except for a scale factor that is probably due to higher
modes of the cavity25, not included in the calculation.

The controlled phase interaction allows universal two-qubit gates.
As an example, we produce entangled states on demand (Fig. 3). The
pulse sequence in Fig. 3a generates any of the four Bell states,

Y+
!! "

~ 1ffiffi
2
p 0, 0j i+ 1, 1j ið Þ W+

!! "
~ 1ffiffi

2
p 0, 1j i+ 1, 0j ið Þ

depending on the choice of C-Phase gate cUij applied

(cUij l, rj i~ {1ð Þdil djr l, rj i, where d is Kronecker’s delta). We achieve
#f(t)dt 5p by tuning the amplitude of a 30 ns VR-pulse close to point
II and back. During the pulse, QR acquires a large dynamical phase
w01 < 260p. The four cUij gates differ by whether w01 and w10 are
even or odd multiples of p. We tune w01 over a 2p range by adjusting
the rising and falling edges of the pulse, and w10 by varying the
amplitude of a simultaneous weak VL-pulse (Supplementary Fig. 3).
The conditional phase #f(t)dt is largely independent of these two
adjustments.

To detect the entanglement, we reconstruct the two-qubit density
matrix r by quantum state tomography using joint dispersive read-
out9,22,24. A pulsed measurement of the homodyne voltage VH mea-
sures the operator:

M~b1sL
z zb2sR

z zb12sL
z6sR

z

Operation in the strong-dispersive regime23,24 makes the three con-
stant coefficients have approximately the same magnitude,
jb12j< jb1j, jb2j, enhancing sensitivity to two-qubit correlations. A
complete set of 15 linearly independent operators is built using sin-
gle-qubit rotations before measuring M. An ensemble average of each
operator is obtained by executing the sequence in Fig. 3a 450,000
times. The 15 average values are then input to a maximum-likelihood
estimator of r (Supplementary Information).

The inferred density matrices rml reveal in all four cases (Fig. 3b–e)
a high degree of two-qubit entanglement, which we quantify using
concurrence30, C. Values are listed in Fig. 3 legend, along with the
metrics of purity P(r) 5 Tr(r2) and fidelity to the target state jyæ,
F(r, y) 5 Æyjrjyæ. Note that there are several common definitions of
fidelity in the literature, and our definition is the square of the fidelity
used in refs 18 and 24. The quoted values significantly extend the state
of the art for solid-state entanglement18, and provide evidence that we
have a high-fidelity universal set of two-qubit gates.

One- and two-qubit gates can be concatenated to realize simple
algorithms, such as Grover’s quantum search1,2 shown in Fig. 4.
Given a function f(x) on the two-bit set x[ 00, 01, 10, 11f g such that
f(x) 5 0 except at some x0, where f(x0) 5 1, this well-known algo-
rithm can determine x0 with a single call of an oracle O that encodes

Figure 1 | Two-qubit cQED device, and cavity/qubit characterization.
a, Optical micrograph of four-port device with a coplanar waveguide cavity
bus coupling transmon qubits QL and QR (coloured red and blue in insets),
and local flux-bias lines providing fast qubit tuning. Microwave pulses at the
qubit transition frequencies fL and fR drive single-qubit rotations, and a
pulsed measurement of the cavity homodyne voltage VH (at frequency fC)
provides two-qubit readout. The flux-bias lines (bottom-left and top-right
ports) are coplanar waveguides with short-circuit termination next to their
target qubit. The termination geometry allows currents (IL and IR) on the
lines to couple flux through the split junctions (b, inset). b, Grey-scale

images of cavity transmission and of qubit spectroscopy as a function of VR,
showing local tuning of QR across the avoided crossing with QL (point III)
and across the vacuum Rabi splitting with the cavity (point IV). Semi-
transparent lines are theoretical best fits obtained from numerical
diagonalization of a generalized Tavis–Cummings Hamiltonian28. Points I
and II are the operating points of the processor. Preparation, single-qubit
operations and measurements are performed at point I, and a C-Phase gate is
achieved by pulsing into point II. Numerals indicate excitation level of QL

(red) and QR (blue) in the spectroscopy at point I.
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Adjusting: 
!
• Amplitude of simult. weak pulse on L-qubit 
!

• Rising & falling edges of pulse 
!

• Control by two orders of magnitude 
(residual 1.2MHz at I)

:  All four C-Phase Gates possible

C-Phase!

levels, producing a frequency shift f/2p of the lower branch with
respect to the sum fL 1 fR, in good agreement with a numerical dia-
gonalization of the generalized Tavis–Cummings Hamiltonian28 (see
Methods).

This shift is the mechanism of our conditional phase gate. Flux
pulses, adiabatic with respect to the j1, 1æ « j0, 2æ avoided crossing,
produce phase gates

U~

1 0 0 0

0 eiw01 0 0

0 0 eiw10 0

0 0 0 eiw11

0

BBB@

1

CCCA

in the computational Hilbert space. Here, wlr 5 2p#dflr(t)dt is the
dynamical phase acquired by jl, ræ, and dflr is the deviation of flr from
its value at point I. A VR pulse into point II such that
#f(t)dt 5 (2n 1 1)p with integer n implements a C-Phase gate,
because w11 5 w01 1 w10 2 #f(t)dt. This method of realizing a
C-Phase gate by adiabatically using the avoided crossing between
computational and non-computational states is generally applicable
to qubit implementations with finite anharmonicity, such as trans-
mons12 or phase qubits13. A similar approach involving higher excita-
tion levels but with non-adiabatic pulses was previously proposed29.
The negative anharmonicity permits the phase gate at point II to
occur before the onset of transverse coupling at point III.

Control of f by two orders of magnitude provides an excellent on-
off ratio for the C-Phase gate. Measurements of f obtained from
spectroscopy and from time-domain experiments show very good
agreement (Fig. 2c). The time-domain method measures the differ-
ence in the precession frequency of QL in two Ramsey-style experi-
ments, where a VR-pulse of varying duration (0–100 ns) is inserted
between p/2 rotations of QL, with QR either in the ground state j0æ or
excited into state j1æ. Using the time-domain approach, we measure a
residual f/2p< 1.2 MHz at point I (star in Fig. 2c). The theoretical f
obtained by numerical diagonalization shows reasonable agreement
with the data, except for a scale factor that is probably due to higher
modes of the cavity25, not included in the calculation.

The controlled phase interaction allows universal two-qubit gates.
As an example, we produce entangled states on demand (Fig. 3). The
pulse sequence in Fig. 3a generates any of the four Bell states,

Y+
!! "

~ 1ffiffi
2
p 0, 0j i+ 1, 1j ið Þ W+

!! "
~ 1ffiffi

2
p 0, 1j i+ 1, 0j ið Þ

depending on the choice of C-Phase gate cUij applied

(cUij l, rj i~ {1ð Þdil djr l, rj i, where d is Kronecker’s delta). We achieve
#f(t)dt 5p by tuning the amplitude of a 30 ns VR-pulse close to point
II and back. During the pulse, QR acquires a large dynamical phase
w01 < 260p. The four cUij gates differ by whether w01 and w10 are
even or odd multiples of p. We tune w01 over a 2p range by adjusting
the rising and falling edges of the pulse, and w10 by varying the
amplitude of a simultaneous weak VL-pulse (Supplementary Fig. 3).
The conditional phase #f(t)dt is largely independent of these two
adjustments.

To detect the entanglement, we reconstruct the two-qubit density
matrix r by quantum state tomography using joint dispersive read-
out9,22,24. A pulsed measurement of the homodyne voltage VH mea-
sures the operator:

M~b1sL
z zb2sR

z zb12sL
z6sR

z

Operation in the strong-dispersive regime23,24 makes the three con-
stant coefficients have approximately the same magnitude,
jb12j< jb1j, jb2j, enhancing sensitivity to two-qubit correlations. A
complete set of 15 linearly independent operators is built using sin-
gle-qubit rotations before measuring M. An ensemble average of each
operator is obtained by executing the sequence in Fig. 3a 450,000
times. The 15 average values are then input to a maximum-likelihood
estimator of r (Supplementary Information).

The inferred density matrices rml reveal in all four cases (Fig. 3b–e)
a high degree of two-qubit entanglement, which we quantify using
concurrence30, C. Values are listed in Fig. 3 legend, along with the
metrics of purity P(r) 5 Tr(r2) and fidelity to the target state jyæ,
F(r, y) 5 Æyjrjyæ. Note that there are several common definitions of
fidelity in the literature, and our definition is the square of the fidelity
used in refs 18 and 24. The quoted values significantly extend the state
of the art for solid-state entanglement18, and provide evidence that we
have a high-fidelity universal set of two-qubit gates.

One- and two-qubit gates can be concatenated to realize simple
algorithms, such as Grover’s quantum search1,2 shown in Fig. 4.
Given a function f(x) on the two-bit set x[ 00, 01, 10, 11f g such that
f(x) 5 0 except at some x0, where f(x0) 5 1, this well-known algo-
rithm can determine x0 with a single call of an oracle O that encodes

Figure 1 | Two-qubit cQED device, and cavity/qubit characterization.
a, Optical micrograph of four-port device with a coplanar waveguide cavity
bus coupling transmon qubits QL and QR (coloured red and blue in insets),
and local flux-bias lines providing fast qubit tuning. Microwave pulses at the
qubit transition frequencies fL and fR drive single-qubit rotations, and a
pulsed measurement of the cavity homodyne voltage VH (at frequency fC)
provides two-qubit readout. The flux-bias lines (bottom-left and top-right
ports) are coplanar waveguides with short-circuit termination next to their
target qubit. The termination geometry allows currents (IL and IR) on the
lines to couple flux through the split junctions (b, inset). b, Grey-scale

images of cavity transmission and of qubit spectroscopy as a function of VR,
showing local tuning of QR across the avoided crossing with QL (point III)
and across the vacuum Rabi splitting with the cavity (point IV). Semi-
transparent lines are theoretical best fits obtained from numerical
diagonalization of a generalized Tavis–Cummings Hamiltonian28. Points I
and II are the operating points of the processor. Preparation, single-qubit
operations and measurements are performed at point I, and a C-Phase gate is
achieved by pulsing into point II. Numerals indicate excitation level of QL

(red) and QR (blue) in the spectroscopy at point I.
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Implementing the Grover Algorithm on a 2-Qubit 
Processor 

In summary, we have demonstrated two-qubit quantum algo-
rithms using a superconducting circuit. The incorporation of local
flux control and joint-dispersive readout into cQED, together with a
tenfold increase in qubit coherence over previous two-qubit devices,
has enabled on-demand generation and detection of entanglement
and the implementation of the Grover and Deutsch–Jozsa algorithms.
The present architecture can be immediately expanded to several
qubits with controllable sz6sz interactions between nearest-
frequency neighbours, placing within reach the generation of

Greenberger–Horne–Zeilinger states and the exploration of basic
concepts of quantum error correction1,2.

METHODS SUMMARY
Device fabrication. A 180 nm Nb film was d.c.-magnetron sputtered on the epi-
polished surface of an R-plane corundum (a-Al2O3) wafer (2 inches diameter,
430mm thickness). Coplanar waveguide structures (cavity and flux-bias lines)
were patterned by optical lithography and fluorine-based reactive ion etching of
Nb. Transmon features (interdigitated capacitors and split junctions) were
patterned on 2 mm 3 7 mm chips using electron-beam lithography, double-
angle evaporation of Al (20/90 nm) with intermediate oxidation (15% O2 in
Ar at 15 torr for 12 min), and lift-off.

A completed device was cooled to 13 mK in a 3He-4He dilution refrigerator.
The refrigerator wiring is shown in Supplementary Fig. 2. Careful microwave
engineering of the sample holder and on-chip wirebonding across ground planes
were required to suppress spurious resonance modes on- and off-chip.
Simulations using Sonnet software assisted this iterative process. The sample
was enclosed in two layers of Cryoperm magnetic shielding, allowing high-fidelity
operation of the processor during unattended overnight runs.
cQED theory. The Tavis–Cummings28 Hamiltonian generalized to multi-level
transmon qubits26 is:

H~vCa{az
X

q[ L, Rf g

XN

j~0

vq
0j jj iq jh jqz aza{! "XN

j,k~0

g
q
jk jj iq kh jq

 !
ð1Þ

Here, vC is the bare cavity frequency, vq
0j~v0j ECq, EJq

! "
is the transition fre-

quency for qubit q from ground to excited state j, and g
q
jk~gqnjk ECq, EJq

! "
, with gq

a bare qubit–cavity coupling and njk a level-dependent coupling matrix element.
The dependence of these parameters on qubit charging energy ECq and Josephson

energy EJq is indicated. The flux control enters through EJq~Emax
Jq cos pWq

#
W0

! "$$ $$,
with Wq the flux through the qubit loop, and a linear flux–voltage relation
Wq~aqLVLzaqRVRzWq,0, accounting for crosstalk and offsets. (Crosstalk,
,30%, probably results from spatial distribution of flux-bias return currents on
the ground plane.) The above parameters are tightly constrained by the spectro-
scopy and transmission data shown (Figs 1b, 2a and b) and transmission data (not
shown) for the QL-cavity vacuum Rabi splitting. Simultaneously fitting the spectra
given by numerical diagonalization of the Hamiltonian (truncated to N 5 5 qubit
levels and 5 cavity photons) to these data gives Emax

JL Rð Þ=h~28:48 42:34ð ÞGHz,

ECL(R)/h 5 317(297) MHz, gL(R)/2p5 199(183) MHz. Cavity parameters are
vC/2p5 6.902 GHz and linewidth k/2p5 1 MHz.
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Figure 4 | Implementation of Grover’s search algorithm. a, Concatenation
of single-qubit and C-Phase gates implementing one iteration of Grover
searching. Without loss of generality, we have replaced the
Walsh–Hadamard transformations W~Rp

x Rp=2
y in the usual description of

the algorithm1,2 with Rp=2
y rotations in order to eliminate six single-qubit

rotations and complete the sequence in 104 ns. (Supplementary Fig. 3 shows
the microwave and flux pulses implementing the sequence.) The orange box
is the oracle O 5 cUij that encodes the solution x0 5 ij to the search problem
in a quantum phase. Note that the first half of the algorithm is identical to
the entangling sequence in Fig. 3, while the second half is essentially its
mirror image. b–g, Real part of rml obtained by state tomography after each
step of the algorithm with oracle O 5 cU10. Starting from | 0, 0æ (b), the
qubits are simultaneously rotated into a maximal superposition state
(c). The oracle then marks the solution, | 1, 0æ, by inverting its phase (d). The
Rp=2

y rotation on QL turns the state into the Bell state Yzj i, demonstrating
that the state is highly entangled at this stage. The Rp=2

y rotation on QR

produces a state identical to (d) (data not shown). The application of cU00

undoes the entanglement, producing a maximal superposition state (f). The
final rotations yield an output state (g) with fidelity F 5 85% to the correct
answer, | 1, 0æ.

Table 1 | Summary of algorithmic performance

Element Grover search oracle* Deutsch–Jozsa function{

f00 f01 f10 f11 f0 f1 f2 f3

Æ0,0 | r | 0,0æ Ideal 1 0 0 0 0 0 1 1
Measured 0.81(1) 0.08(1) 0.07(2) 0.065(7) 0.010(3) 0.014(5) 0.909(6) 0.841(9)

Æ0,1 | r | 0,1æ Ideal 0 1 0 0 0 0 0 0
Measured 0.066(7) 0.802(9) 0.05(1) 0.054(8) 0.012(4) 0.008(4) 0.031(8) 0.04(2)

Æ1,0 | r | 1,0æ Ideal 0 0 1 0 1 1 0 0
Measured 0.08(1) 0.05(1) 0.82(2) 0.07(1) 0.93(1) 0.93(1) 0.05(1) 0.04(1)

Æ1,1 | r | 1,1æ Ideal 0 0 0 1 0 0 0 0
Measured 0.05(2) 0.07(1) 0.06(1) 0.81(1) 0.05(1) 0.04(1) 0.012(9) 0.07(2)

Fidelity of the reconstructed output states of the Grover and Deutsch–Jozsa algorithms to their ideal outputs. These results suggest that, if combined with single-shot readout, the two algorithms
executed with this processor would give the correct answer with probability far exceeding the 50% success probability of the best classical algorithms limited to single calls of the oracle7 or function.
*Uncertainties are based on 10 repetitions.
{Uncertainties are based on 8 repetitions.
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Implementing the Grover Algorithm on a 2-Qubit 
Processor 

In summary, we have demonstrated two-qubit quantum algo-
rithms using a superconducting circuit. The incorporation of local
flux control and joint-dispersive readout into cQED, together with a
tenfold increase in qubit coherence over previous two-qubit devices,
has enabled on-demand generation and detection of entanglement
and the implementation of the Grover and Deutsch–Jozsa algorithms.
The present architecture can be immediately expanded to several
qubits with controllable sz6sz interactions between nearest-
frequency neighbours, placing within reach the generation of

Greenberger–Horne–Zeilinger states and the exploration of basic
concepts of quantum error correction1,2.

METHODS SUMMARY
Device fabrication. A 180 nm Nb film was d.c.-magnetron sputtered on the epi-
polished surface of an R-plane corundum (a-Al2O3) wafer (2 inches diameter,
430mm thickness). Coplanar waveguide structures (cavity and flux-bias lines)
were patterned by optical lithography and fluorine-based reactive ion etching of
Nb. Transmon features (interdigitated capacitors and split junctions) were
patterned on 2 mm 3 7 mm chips using electron-beam lithography, double-
angle evaporation of Al (20/90 nm) with intermediate oxidation (15% O2 in
Ar at 15 torr for 12 min), and lift-off.

A completed device was cooled to 13 mK in a 3He-4He dilution refrigerator.
The refrigerator wiring is shown in Supplementary Fig. 2. Careful microwave
engineering of the sample holder and on-chip wirebonding across ground planes
were required to suppress spurious resonance modes on- and off-chip.
Simulations using Sonnet software assisted this iterative process. The sample
was enclosed in two layers of Cryoperm magnetic shielding, allowing high-fidelity
operation of the processor during unattended overnight runs.
cQED theory. The Tavis–Cummings28 Hamiltonian generalized to multi-level
transmon qubits26 is:

H~vCa{az
X

q[ L, Rf g

XN

j~0

vq
0j jj iq jh jqz aza{! "XN

j,k~0

g
q
jk jj iq kh jq

 !
ð1Þ

Here, vC is the bare cavity frequency, vq
0j~v0j ECq, EJq

! "
is the transition fre-

quency for qubit q from ground to excited state j, and g
q
jk~gqnjk ECq, EJq

! "
, with gq

a bare qubit–cavity coupling and njk a level-dependent coupling matrix element.
The dependence of these parameters on qubit charging energy ECq and Josephson

energy EJq is indicated. The flux control enters through EJq~Emax
Jq cos pWq

#
W0

! "$$ $$,
with Wq the flux through the qubit loop, and a linear flux–voltage relation
Wq~aqLVLzaqRVRzWq,0, accounting for crosstalk and offsets. (Crosstalk,
,30%, probably results from spatial distribution of flux-bias return currents on
the ground plane.) The above parameters are tightly constrained by the spectro-
scopy and transmission data shown (Figs 1b, 2a and b) and transmission data (not
shown) for the QL-cavity vacuum Rabi splitting. Simultaneously fitting the spectra
given by numerical diagonalization of the Hamiltonian (truncated to N 5 5 qubit
levels and 5 cavity photons) to these data gives Emax

JL Rð Þ=h~28:48 42:34ð ÞGHz,

ECL(R)/h 5 317(297) MHz, gL(R)/2p5 199(183) MHz. Cavity parameters are
vC/2p5 6.902 GHz and linewidth k/2p5 1 MHz.
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Figure 4 | Implementation of Grover’s search algorithm. a, Concatenation
of single-qubit and C-Phase gates implementing one iteration of Grover
searching. Without loss of generality, we have replaced the
Walsh–Hadamard transformations W~Rp

x Rp=2
y in the usual description of

the algorithm1,2 with Rp=2
y rotations in order to eliminate six single-qubit

rotations and complete the sequence in 104 ns. (Supplementary Fig. 3 shows
the microwave and flux pulses implementing the sequence.) The orange box
is the oracle O 5 cUij that encodes the solution x0 5 ij to the search problem
in a quantum phase. Note that the first half of the algorithm is identical to
the entangling sequence in Fig. 3, while the second half is essentially its
mirror image. b–g, Real part of rml obtained by state tomography after each
step of the algorithm with oracle O 5 cU10. Starting from | 0, 0æ (b), the
qubits are simultaneously rotated into a maximal superposition state
(c). The oracle then marks the solution, | 1, 0æ, by inverting its phase (d). The
Rp=2

y rotation on QL turns the state into the Bell state Yzj i, demonstrating
that the state is highly entangled at this stage. The Rp=2

y rotation on QR

produces a state identical to (d) (data not shown). The application of cU00

undoes the entanglement, producing a maximal superposition state (f). The
final rotations yield an output state (g) with fidelity F 5 85% to the correct
answer, | 1, 0æ.

Table 1 | Summary of algorithmic performance

Element Grover search oracle* Deutsch–Jozsa function{

f00 f01 f10 f11 f0 f1 f2 f3

Æ0,0 | r | 0,0æ Ideal 1 0 0 0 0 0 1 1
Measured 0.81(1) 0.08(1) 0.07(2) 0.065(7) 0.010(3) 0.014(5) 0.909(6) 0.841(9)

Æ0,1 | r | 0,1æ Ideal 0 1 0 0 0 0 0 0
Measured 0.066(7) 0.802(9) 0.05(1) 0.054(8) 0.012(4) 0.008(4) 0.031(8) 0.04(2)

Æ1,0 | r | 1,0æ Ideal 0 0 1 0 1 1 0 0
Measured 0.08(1) 0.05(1) 0.82(2) 0.07(1) 0.93(1) 0.93(1) 0.05(1) 0.04(1)

Æ1,1 | r | 1,1æ Ideal 0 0 0 1 0 0 0 0
Measured 0.05(2) 0.07(1) 0.06(1) 0.81(1) 0.05(1) 0.04(1) 0.012(9) 0.07(2)

Fidelity of the reconstructed output states of the Grover and Deutsch–Jozsa algorithms to their ideal outputs. These results suggest that, if combined with single-shot readout, the two algorithms
executed with this processor would give the correct answer with probability far exceeding the 50% success probability of the best classical algorithms limited to single calls of the oracle7 or function.
*Uncertainties are based on 10 repetitions.
{Uncertainties are based on 8 repetitions.
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Implementing the Grover Algorithm on a 2-Qubit 
Processor 

In summary, we have demonstrated two-qubit quantum algo-
rithms using a superconducting circuit. The incorporation of local
flux control and joint-dispersive readout into cQED, together with a
tenfold increase in qubit coherence over previous two-qubit devices,
has enabled on-demand generation and detection of entanglement
and the implementation of the Grover and Deutsch–Jozsa algorithms.
The present architecture can be immediately expanded to several
qubits with controllable sz6sz interactions between nearest-
frequency neighbours, placing within reach the generation of

Greenberger–Horne–Zeilinger states and the exploration of basic
concepts of quantum error correction1,2.

METHODS SUMMARY
Device fabrication. A 180 nm Nb film was d.c.-magnetron sputtered on the epi-
polished surface of an R-plane corundum (a-Al2O3) wafer (2 inches diameter,
430mm thickness). Coplanar waveguide structures (cavity and flux-bias lines)
were patterned by optical lithography and fluorine-based reactive ion etching of
Nb. Transmon features (interdigitated capacitors and split junctions) were
patterned on 2 mm 3 7 mm chips using electron-beam lithography, double-
angle evaporation of Al (20/90 nm) with intermediate oxidation (15% O2 in
Ar at 15 torr for 12 min), and lift-off.

A completed device was cooled to 13 mK in a 3He-4He dilution refrigerator.
The refrigerator wiring is shown in Supplementary Fig. 2. Careful microwave
engineering of the sample holder and on-chip wirebonding across ground planes
were required to suppress spurious resonance modes on- and off-chip.
Simulations using Sonnet software assisted this iterative process. The sample
was enclosed in two layers of Cryoperm magnetic shielding, allowing high-fidelity
operation of the processor during unattended overnight runs.
cQED theory. The Tavis–Cummings28 Hamiltonian generalized to multi-level
transmon qubits26 is:

H~vCa{az
X

q[ L, Rf g

XN

j~0

vq
0j jj iq jh jqz aza{! "XN

j,k~0

g
q
jk jj iq kh jq

 !
ð1Þ

Here, vC is the bare cavity frequency, vq
0j~v0j ECq, EJq

! "
is the transition fre-

quency for qubit q from ground to excited state j, and g
q
jk~gqnjk ECq, EJq

! "
, with gq

a bare qubit–cavity coupling and njk a level-dependent coupling matrix element.
The dependence of these parameters on qubit charging energy ECq and Josephson

energy EJq is indicated. The flux control enters through EJq~Emax
Jq cos pWq

#
W0

! "$$ $$,
with Wq the flux through the qubit loop, and a linear flux–voltage relation
Wq~aqLVLzaqRVRzWq,0, accounting for crosstalk and offsets. (Crosstalk,
,30%, probably results from spatial distribution of flux-bias return currents on
the ground plane.) The above parameters are tightly constrained by the spectro-
scopy and transmission data shown (Figs 1b, 2a and b) and transmission data (not
shown) for the QL-cavity vacuum Rabi splitting. Simultaneously fitting the spectra
given by numerical diagonalization of the Hamiltonian (truncated to N 5 5 qubit
levels and 5 cavity photons) to these data gives Emax

JL Rð Þ=h~28:48 42:34ð ÞGHz,

ECL(R)/h 5 317(297) MHz, gL(R)/2p5 199(183) MHz. Cavity parameters are
vC/2p5 6.902 GHz and linewidth k/2p5 1 MHz.
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Figure 4 | Implementation of Grover’s search algorithm. a, Concatenation
of single-qubit and C-Phase gates implementing one iteration of Grover
searching. Without loss of generality, we have replaced the
Walsh–Hadamard transformations W~Rp

x Rp=2
y in the usual description of

the algorithm1,2 with Rp=2
y rotations in order to eliminate six single-qubit

rotations and complete the sequence in 104 ns. (Supplementary Fig. 3 shows
the microwave and flux pulses implementing the sequence.) The orange box
is the oracle O 5 cUij that encodes the solution x0 5 ij to the search problem
in a quantum phase. Note that the first half of the algorithm is identical to
the entangling sequence in Fig. 3, while the second half is essentially its
mirror image. b–g, Real part of rml obtained by state tomography after each
step of the algorithm with oracle O 5 cU10. Starting from | 0, 0æ (b), the
qubits are simultaneously rotated into a maximal superposition state
(c). The oracle then marks the solution, | 1, 0æ, by inverting its phase (d). The
Rp=2

y rotation on QL turns the state into the Bell state Yzj i, demonstrating
that the state is highly entangled at this stage. The Rp=2

y rotation on QR

produces a state identical to (d) (data not shown). The application of cU00

undoes the entanglement, producing a maximal superposition state (f). The
final rotations yield an output state (g) with fidelity F 5 85% to the correct
answer, | 1, 0æ.

Table 1 | Summary of algorithmic performance

Element Grover search oracle* Deutsch–Jozsa function{

f00 f01 f10 f11 f0 f1 f2 f3

Æ0,0 | r | 0,0æ Ideal 1 0 0 0 0 0 1 1
Measured 0.81(1) 0.08(1) 0.07(2) 0.065(7) 0.010(3) 0.014(5) 0.909(6) 0.841(9)

Æ0,1 | r | 0,1æ Ideal 0 1 0 0 0 0 0 0
Measured 0.066(7) 0.802(9) 0.05(1) 0.054(8) 0.012(4) 0.008(4) 0.031(8) 0.04(2)

Æ1,0 | r | 1,0æ Ideal 0 0 1 0 1 1 0 0
Measured 0.08(1) 0.05(1) 0.82(2) 0.07(1) 0.93(1) 0.93(1) 0.05(1) 0.04(1)

Æ1,1 | r | 1,1æ Ideal 0 0 0 1 0 0 0 0
Measured 0.05(2) 0.07(1) 0.06(1) 0.81(1) 0.05(1) 0.04(1) 0.012(9) 0.07(2)

Fidelity of the reconstructed output states of the Grover and Deutsch–Jozsa algorithms to their ideal outputs. These results suggest that, if combined with single-shot readout, the two algorithms
executed with this processor would give the correct answer with probability far exceeding the 50% success probability of the best classical algorithms limited to single calls of the oracle7 or function.
*Uncertainties are based on 10 repetitions.
{Uncertainties are based on 8 repetitions.
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Implementing the Grover Algorithm on a 2-Qubit 
Processor 

In summary, we have demonstrated two-qubit quantum algo-
rithms using a superconducting circuit. The incorporation of local
flux control and joint-dispersive readout into cQED, together with a
tenfold increase in qubit coherence over previous two-qubit devices,
has enabled on-demand generation and detection of entanglement
and the implementation of the Grover and Deutsch–Jozsa algorithms.
The present architecture can be immediately expanded to several
qubits with controllable sz6sz interactions between nearest-
frequency neighbours, placing within reach the generation of

Greenberger–Horne–Zeilinger states and the exploration of basic
concepts of quantum error correction1,2.

METHODS SUMMARY
Device fabrication. A 180 nm Nb film was d.c.-magnetron sputtered on the epi-
polished surface of an R-plane corundum (a-Al2O3) wafer (2 inches diameter,
430mm thickness). Coplanar waveguide structures (cavity and flux-bias lines)
were patterned by optical lithography and fluorine-based reactive ion etching of
Nb. Transmon features (interdigitated capacitors and split junctions) were
patterned on 2 mm 3 7 mm chips using electron-beam lithography, double-
angle evaporation of Al (20/90 nm) with intermediate oxidation (15% O2 in
Ar at 15 torr for 12 min), and lift-off.

A completed device was cooled to 13 mK in a 3He-4He dilution refrigerator.
The refrigerator wiring is shown in Supplementary Fig. 2. Careful microwave
engineering of the sample holder and on-chip wirebonding across ground planes
were required to suppress spurious resonance modes on- and off-chip.
Simulations using Sonnet software assisted this iterative process. The sample
was enclosed in two layers of Cryoperm magnetic shielding, allowing high-fidelity
operation of the processor during unattended overnight runs.
cQED theory. The Tavis–Cummings28 Hamiltonian generalized to multi-level
transmon qubits26 is:

H~vCa{az
X

q[ L, Rf g

XN

j~0

vq
0j jj iq jh jqz aza{! "XN

j,k~0

g
q
jk jj iq kh jq

 !
ð1Þ

Here, vC is the bare cavity frequency, vq
0j~v0j ECq, EJq

! "
is the transition fre-

quency for qubit q from ground to excited state j, and g
q
jk~gqnjk ECq, EJq

! "
, with gq

a bare qubit–cavity coupling and njk a level-dependent coupling matrix element.
The dependence of these parameters on qubit charging energy ECq and Josephson

energy EJq is indicated. The flux control enters through EJq~Emax
Jq cos pWq

#
W0

! "$$ $$,
with Wq the flux through the qubit loop, and a linear flux–voltage relation
Wq~aqLVLzaqRVRzWq,0, accounting for crosstalk and offsets. (Crosstalk,
,30%, probably results from spatial distribution of flux-bias return currents on
the ground plane.) The above parameters are tightly constrained by the spectro-
scopy and transmission data shown (Figs 1b, 2a and b) and transmission data (not
shown) for the QL-cavity vacuum Rabi splitting. Simultaneously fitting the spectra
given by numerical diagonalization of the Hamiltonian (truncated to N 5 5 qubit
levels and 5 cavity photons) to these data gives Emax

JL Rð Þ=h~28:48 42:34ð ÞGHz,

ECL(R)/h 5 317(297) MHz, gL(R)/2p5 199(183) MHz. Cavity parameters are
vC/2p5 6.902 GHz and linewidth k/2p5 1 MHz.
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Figure 4 | Implementation of Grover’s search algorithm. a, Concatenation
of single-qubit and C-Phase gates implementing one iteration of Grover
searching. Without loss of generality, we have replaced the
Walsh–Hadamard transformations W~Rp

x Rp=2
y in the usual description of

the algorithm1,2 with Rp=2
y rotations in order to eliminate six single-qubit

rotations and complete the sequence in 104 ns. (Supplementary Fig. 3 shows
the microwave and flux pulses implementing the sequence.) The orange box
is the oracle O 5 cUij that encodes the solution x0 5 ij to the search problem
in a quantum phase. Note that the first half of the algorithm is identical to
the entangling sequence in Fig. 3, while the second half is essentially its
mirror image. b–g, Real part of rml obtained by state tomography after each
step of the algorithm with oracle O 5 cU10. Starting from | 0, 0æ (b), the
qubits are simultaneously rotated into a maximal superposition state
(c). The oracle then marks the solution, | 1, 0æ, by inverting its phase (d). The
Rp=2

y rotation on QL turns the state into the Bell state Yzj i, demonstrating
that the state is highly entangled at this stage. The Rp=2

y rotation on QR

produces a state identical to (d) (data not shown). The application of cU00

undoes the entanglement, producing a maximal superposition state (f). The
final rotations yield an output state (g) with fidelity F 5 85% to the correct
answer, | 1, 0æ.

Table 1 | Summary of algorithmic performance

Element Grover search oracle* Deutsch–Jozsa function{

f00 f01 f10 f11 f0 f1 f2 f3

Æ0,0 | r | 0,0æ Ideal 1 0 0 0 0 0 1 1
Measured 0.81(1) 0.08(1) 0.07(2) 0.065(7) 0.010(3) 0.014(5) 0.909(6) 0.841(9)

Æ0,1 | r | 0,1æ Ideal 0 1 0 0 0 0 0 0
Measured 0.066(7) 0.802(9) 0.05(1) 0.054(8) 0.012(4) 0.008(4) 0.031(8) 0.04(2)

Æ1,0 | r | 1,0æ Ideal 0 0 1 0 1 1 0 0
Measured 0.08(1) 0.05(1) 0.82(2) 0.07(1) 0.93(1) 0.93(1) 0.05(1) 0.04(1)

Æ1,1 | r | 1,1æ Ideal 0 0 0 1 0 0 0 0
Measured 0.05(2) 0.07(1) 0.06(1) 0.81(1) 0.05(1) 0.04(1) 0.012(9) 0.07(2)

Fidelity of the reconstructed output states of the Grover and Deutsch–Jozsa algorithms to their ideal outputs. These results suggest that, if combined with single-shot readout, the two algorithms
executed with this processor would give the correct answer with probability far exceeding the 50% success probability of the best classical algorithms limited to single calls of the oracle7 or function.
*Uncertainties are based on 10 repetitions.
{Uncertainties are based on 8 repetitions.
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Grover Algorithm on 2-Qubit Processor: 
Experimental Results 

In summary, we have demonstrated two-qubit quantum algo-
rithms using a superconducting circuit. The incorporation of local
flux control and joint-dispersive readout into cQED, together with a
tenfold increase in qubit coherence over previous two-qubit devices,
has enabled on-demand generation and detection of entanglement
and the implementation of the Grover and Deutsch–Jozsa algorithms.
The present architecture can be immediately expanded to several
qubits with controllable sz6sz interactions between nearest-
frequency neighbours, placing within reach the generation of

Greenberger–Horne–Zeilinger states and the exploration of basic
concepts of quantum error correction1,2.

METHODS SUMMARY
Device fabrication. A 180 nm Nb film was d.c.-magnetron sputtered on the epi-
polished surface of an R-plane corundum (a-Al2O3) wafer (2 inches diameter,
430mm thickness). Coplanar waveguide structures (cavity and flux-bias lines)
were patterned by optical lithography and fluorine-based reactive ion etching of
Nb. Transmon features (interdigitated capacitors and split junctions) were
patterned on 2 mm 3 7 mm chips using electron-beam lithography, double-
angle evaporation of Al (20/90 nm) with intermediate oxidation (15% O2 in
Ar at 15 torr for 12 min), and lift-off.

A completed device was cooled to 13 mK in a 3He-4He dilution refrigerator.
The refrigerator wiring is shown in Supplementary Fig. 2. Careful microwave
engineering of the sample holder and on-chip wirebonding across ground planes
were required to suppress spurious resonance modes on- and off-chip.
Simulations using Sonnet software assisted this iterative process. The sample
was enclosed in two layers of Cryoperm magnetic shielding, allowing high-fidelity
operation of the processor during unattended overnight runs.
cQED theory. The Tavis–Cummings28 Hamiltonian generalized to multi-level
transmon qubits26 is:

H~vCa{az
X

q[ L, Rf g

XN

j~0

vq
0j jj iq jh jqz aza{! "XN

j,k~0

g
q
jk jj iq kh jq

 !
ð1Þ

Here, vC is the bare cavity frequency, vq
0j~v0j ECq, EJq

! "
is the transition fre-

quency for qubit q from ground to excited state j, and g
q
jk~gqnjk ECq, EJq

! "
, with gq

a bare qubit–cavity coupling and njk a level-dependent coupling matrix element.
The dependence of these parameters on qubit charging energy ECq and Josephson

energy EJq is indicated. The flux control enters through EJq~Emax
Jq cos pWq

#
W0

! "$$ $$,
with Wq the flux through the qubit loop, and a linear flux–voltage relation
Wq~aqLVLzaqRVRzWq,0, accounting for crosstalk and offsets. (Crosstalk,
,30%, probably results from spatial distribution of flux-bias return currents on
the ground plane.) The above parameters are tightly constrained by the spectro-
scopy and transmission data shown (Figs 1b, 2a and b) and transmission data (not
shown) for the QL-cavity vacuum Rabi splitting. Simultaneously fitting the spectra
given by numerical diagonalization of the Hamiltonian (truncated to N 5 5 qubit
levels and 5 cavity photons) to these data gives Emax

JL Rð Þ=h~28:48 42:34ð ÞGHz,

ECL(R)/h 5 317(297) MHz, gL(R)/2p5 199(183) MHz. Cavity parameters are
vC/2p5 6.902 GHz and linewidth k/2p5 1 MHz.
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Figure 4 | Implementation of Grover’s search algorithm. a, Concatenation
of single-qubit and C-Phase gates implementing one iteration of Grover
searching. Without loss of generality, we have replaced the
Walsh–Hadamard transformations W~Rp

x Rp=2
y in the usual description of

the algorithm1,2 with Rp=2
y rotations in order to eliminate six single-qubit

rotations and complete the sequence in 104 ns. (Supplementary Fig. 3 shows
the microwave and flux pulses implementing the sequence.) The orange box
is the oracle O 5 cUij that encodes the solution x0 5 ij to the search problem
in a quantum phase. Note that the first half of the algorithm is identical to
the entangling sequence in Fig. 3, while the second half is essentially its
mirror image. b–g, Real part of rml obtained by state tomography after each
step of the algorithm with oracle O 5 cU10. Starting from | 0, 0æ (b), the
qubits are simultaneously rotated into a maximal superposition state
(c). The oracle then marks the solution, | 1, 0æ, by inverting its phase (d). The
Rp=2

y rotation on QL turns the state into the Bell state Yzj i, demonstrating
that the state is highly entangled at this stage. The Rp=2

y rotation on QR

produces a state identical to (d) (data not shown). The application of cU00

undoes the entanglement, producing a maximal superposition state (f). The
final rotations yield an output state (g) with fidelity F 5 85% to the correct
answer, | 1, 0æ.

Table 1 | Summary of algorithmic performance

Element Grover search oracle* Deutsch–Jozsa function{

f00 f01 f10 f11 f0 f1 f2 f3

Æ0,0 | r | 0,0æ Ideal 1 0 0 0 0 0 1 1
Measured 0.81(1) 0.08(1) 0.07(2) 0.065(7) 0.010(3) 0.014(5) 0.909(6) 0.841(9)

Æ0,1 | r | 0,1æ Ideal 0 1 0 0 0 0 0 0
Measured 0.066(7) 0.802(9) 0.05(1) 0.054(8) 0.012(4) 0.008(4) 0.031(8) 0.04(2)

Æ1,0 | r | 1,0æ Ideal 0 0 1 0 1 1 0 0
Measured 0.08(1) 0.05(1) 0.82(2) 0.07(1) 0.93(1) 0.93(1) 0.05(1) 0.04(1)

Æ1,1 | r | 1,1æ Ideal 0 0 0 1 0 0 0 0
Measured 0.05(2) 0.07(1) 0.06(1) 0.81(1) 0.05(1) 0.04(1) 0.012(9) 0.07(2)

Fidelity of the reconstructed output states of the Grover and Deutsch–Jozsa algorithms to their ideal outputs. These results suggest that, if combined with single-shot readout, the two algorithms
executed with this processor would give the correct answer with probability far exceeding the 50% success probability of the best classical algorithms limited to single calls of the oracle7 or function.
*Uncertainties are based on 10 repetitions.
{Uncertainties are based on 8 repetitions.
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In summary, we have demonstrated two-qubit quantum algo-
rithms using a superconducting circuit. The incorporation of local
flux control and joint-dispersive readout into cQED, together with a
tenfold increase in qubit coherence over previous two-qubit devices,
has enabled on-demand generation and detection of entanglement
and the implementation of the Grover and Deutsch–Jozsa algorithms.
The present architecture can be immediately expanded to several
qubits with controllable sz6sz interactions between nearest-
frequency neighbours, placing within reach the generation of

Greenberger–Horne–Zeilinger states and the exploration of basic
concepts of quantum error correction1,2.

METHODS SUMMARY
Device fabrication. A 180 nm Nb film was d.c.-magnetron sputtered on the epi-
polished surface of an R-plane corundum (a-Al2O3) wafer (2 inches diameter,
430mm thickness). Coplanar waveguide structures (cavity and flux-bias lines)
were patterned by optical lithography and fluorine-based reactive ion etching of
Nb. Transmon features (interdigitated capacitors and split junctions) were
patterned on 2 mm 3 7 mm chips using electron-beam lithography, double-
angle evaporation of Al (20/90 nm) with intermediate oxidation (15% O2 in
Ar at 15 torr for 12 min), and lift-off.

A completed device was cooled to 13 mK in a 3He-4He dilution refrigerator.
The refrigerator wiring is shown in Supplementary Fig. 2. Careful microwave
engineering of the sample holder and on-chip wirebonding across ground planes
were required to suppress spurious resonance modes on- and off-chip.
Simulations using Sonnet software assisted this iterative process. The sample
was enclosed in two layers of Cryoperm magnetic shielding, allowing high-fidelity
operation of the processor during unattended overnight runs.
cQED theory. The Tavis–Cummings28 Hamiltonian generalized to multi-level
transmon qubits26 is:

H~vCa{az
X

q[ L, Rf g

XN

j~0

vq
0j jj iq jh jqz aza{! "XN

j,k~0

g
q
jk jj iq kh jq

 !
ð1Þ

Here, vC is the bare cavity frequency, vq
0j~v0j ECq, EJq

! "
is the transition fre-

quency for qubit q from ground to excited state j, and g
q
jk~gqnjk ECq, EJq

! "
, with gq

a bare qubit–cavity coupling and njk a level-dependent coupling matrix element.
The dependence of these parameters on qubit charging energy ECq and Josephson

energy EJq is indicated. The flux control enters through EJq~Emax
Jq cos pWq

#
W0

! "$$ $$,
with Wq the flux through the qubit loop, and a linear flux–voltage relation
Wq~aqLVLzaqRVRzWq,0, accounting for crosstalk and offsets. (Crosstalk,
,30%, probably results from spatial distribution of flux-bias return currents on
the ground plane.) The above parameters are tightly constrained by the spectro-
scopy and transmission data shown (Figs 1b, 2a and b) and transmission data (not
shown) for the QL-cavity vacuum Rabi splitting. Simultaneously fitting the spectra
given by numerical diagonalization of the Hamiltonian (truncated to N 5 5 qubit
levels and 5 cavity photons) to these data gives Emax

JL Rð Þ=h~28:48 42:34ð ÞGHz,

ECL(R)/h 5 317(297) MHz, gL(R)/2p5 199(183) MHz. Cavity parameters are
vC/2p5 6.902 GHz and linewidth k/2p5 1 MHz.
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Figure 4 | Implementation of Grover’s search algorithm. a, Concatenation
of single-qubit and C-Phase gates implementing one iteration of Grover
searching. Without loss of generality, we have replaced the
Walsh–Hadamard transformations W~Rp

x Rp=2
y in the usual description of

the algorithm1,2 with Rp=2
y rotations in order to eliminate six single-qubit

rotations and complete the sequence in 104 ns. (Supplementary Fig. 3 shows
the microwave and flux pulses implementing the sequence.) The orange box
is the oracle O 5 cUij that encodes the solution x0 5 ij to the search problem
in a quantum phase. Note that the first half of the algorithm is identical to
the entangling sequence in Fig. 3, while the second half is essentially its
mirror image. b–g, Real part of rml obtained by state tomography after each
step of the algorithm with oracle O 5 cU10. Starting from | 0, 0æ (b), the
qubits are simultaneously rotated into a maximal superposition state
(c). The oracle then marks the solution, | 1, 0æ, by inverting its phase (d). The
Rp=2

y rotation on QL turns the state into the Bell state Yzj i, demonstrating
that the state is highly entangled at this stage. The Rp=2

y rotation on QR

produces a state identical to (d) (data not shown). The application of cU00

undoes the entanglement, producing a maximal superposition state (f). The
final rotations yield an output state (g) with fidelity F 5 85% to the correct
answer, | 1, 0æ.

Table 1 | Summary of algorithmic performance

Element Grover search oracle* Deutsch–Jozsa function{

f00 f01 f10 f11 f0 f1 f2 f3

Æ0,0 | r | 0,0æ Ideal 1 0 0 0 0 0 1 1
Measured 0.81(1) 0.08(1) 0.07(2) 0.065(7) 0.010(3) 0.014(5) 0.909(6) 0.841(9)

Æ0,1 | r | 0,1æ Ideal 0 1 0 0 0 0 0 0
Measured 0.066(7) 0.802(9) 0.05(1) 0.054(8) 0.012(4) 0.008(4) 0.031(8) 0.04(2)

Æ1,0 | r | 1,0æ Ideal 0 0 1 0 1 1 0 0
Measured 0.08(1) 0.05(1) 0.82(2) 0.07(1) 0.93(1) 0.93(1) 0.05(1) 0.04(1)

Æ1,1 | r | 1,1æ Ideal 0 0 0 1 0 0 0 0
Measured 0.05(2) 0.07(1) 0.06(1) 0.81(1) 0.05(1) 0.04(1) 0.012(9) 0.07(2)

Fidelity of the reconstructed output states of the Grover and Deutsch–Jozsa algorithms to their ideal outputs. These results suggest that, if combined with single-shot readout, the two algorithms
executed with this processor would give the correct answer with probability far exceeding the 50% success probability of the best classical algorithms limited to single calls of the oracle7 or function.
*Uncertainties are based on 10 repetitions.
{Uncertainties are based on 8 repetitions.
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State tomography during Grover Iteration

density matrices obtained by state tomography after each step

In summary, we have demonstrated two-qubit quantum algo-
rithms using a superconducting circuit. The incorporation of local
flux control and joint-dispersive readout into cQED, together with a
tenfold increase in qubit coherence over previous two-qubit devices,
has enabled on-demand generation and detection of entanglement
and the implementation of the Grover and Deutsch–Jozsa algorithms.
The present architecture can be immediately expanded to several
qubits with controllable sz6sz interactions between nearest-
frequency neighbours, placing within reach the generation of

Greenberger–Horne–Zeilinger states and the exploration of basic
concepts of quantum error correction1,2.

METHODS SUMMARY
Device fabrication. A 180 nm Nb film was d.c.-magnetron sputtered on the epi-
polished surface of an R-plane corundum (a-Al2O3) wafer (2 inches diameter,
430mm thickness). Coplanar waveguide structures (cavity and flux-bias lines)
were patterned by optical lithography and fluorine-based reactive ion etching of
Nb. Transmon features (interdigitated capacitors and split junctions) were
patterned on 2 mm 3 7 mm chips using electron-beam lithography, double-
angle evaporation of Al (20/90 nm) with intermediate oxidation (15% O2 in
Ar at 15 torr for 12 min), and lift-off.

A completed device was cooled to 13 mK in a 3He-4He dilution refrigerator.
The refrigerator wiring is shown in Supplementary Fig. 2. Careful microwave
engineering of the sample holder and on-chip wirebonding across ground planes
were required to suppress spurious resonance modes on- and off-chip.
Simulations using Sonnet software assisted this iterative process. The sample
was enclosed in two layers of Cryoperm magnetic shielding, allowing high-fidelity
operation of the processor during unattended overnight runs.
cQED theory. The Tavis–Cummings28 Hamiltonian generalized to multi-level
transmon qubits26 is:

H~vCa{az
X

q[ L, Rf g

XN

j~0

vq
0j jj iq jh jqz aza{! "XN

j,k~0

g
q
jk jj iq kh jq

 !
ð1Þ

Here, vC is the bare cavity frequency, vq
0j~v0j ECq, EJq

! "
is the transition fre-

quency for qubit q from ground to excited state j, and g
q
jk~gqnjk ECq, EJq

! "
, with gq

a bare qubit–cavity coupling and njk a level-dependent coupling matrix element.
The dependence of these parameters on qubit charging energy ECq and Josephson

energy EJq is indicated. The flux control enters through EJq~Emax
Jq cos pWq

#
W0

! "$$ $$,
with Wq the flux through the qubit loop, and a linear flux–voltage relation
Wq~aqLVLzaqRVRzWq,0, accounting for crosstalk and offsets. (Crosstalk,
,30%, probably results from spatial distribution of flux-bias return currents on
the ground plane.) The above parameters are tightly constrained by the spectro-
scopy and transmission data shown (Figs 1b, 2a and b) and transmission data (not
shown) for the QL-cavity vacuum Rabi splitting. Simultaneously fitting the spectra
given by numerical diagonalization of the Hamiltonian (truncated to N 5 5 qubit
levels and 5 cavity photons) to these data gives Emax

JL Rð Þ=h~28:48 42:34ð ÞGHz,

ECL(R)/h 5 317(297) MHz, gL(R)/2p5 199(183) MHz. Cavity parameters are
vC/2p5 6.902 GHz and linewidth k/2p5 1 MHz.

Received 11 March; accepted 5 May 2009.
Published online 28 June.

1. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information
(Cambridge Univ. Press, 2000).

2. Kaye, P., Laflamme, R. & Mosca, M. An Introduction to Quantum Computing (Oxford
Univ. Press, 2007).

3. Chuang, I. L., Vandersypen, L. M. K., Zhou, X., Leung, D. W. & Lloyd, S.
Experimental realization of a quantum algorithm. Nature 393, 143–146 (1998).

4. Jones, J. A., Mosca, M. & Hansen, R. H. Implementation of a quantum search
algorithm on a quantum computer. Nature 393, 344–346 (1998).

5. Chuang, I. L., Gershenfeld, N. & Kubinec, M. Experimental implementation of fast
quantum searching. Phys. Rev. Lett. 80, 3408–3411 (1998).

6. Guide, S. et al. Implementation of the Deutsch-Jozsa algorithm on an ion-trap
quantum computer. Nature 421, 48–50 (2003).

7. Brickman, K.-A. et al. Implementation of Grover’s quantum search algorithm in a
scalable system. Phys. Rev. A 72, 050306(R) (2005).

a State tomography

0

0

Grover algorithm

b c d f g

e

00

–0.5

0

0.5

01
10

11
00 01 10 11

Joint
dispersive
readout 

O cU00

efg

dcb

Ry  
/2π

Ry  
/2π

Ry  
/2π

Ry  
/2π

Ry  
/2π

Ry  
/2π

Rx, y
0, π

 
/2, π

Rx, y
0, π

 
/2, π

Figure 4 | Implementation of Grover’s search algorithm. a, Concatenation
of single-qubit and C-Phase gates implementing one iteration of Grover
searching. Without loss of generality, we have replaced the
Walsh–Hadamard transformations W~Rp

x Rp=2
y in the usual description of

the algorithm1,2 with Rp=2
y rotations in order to eliminate six single-qubit

rotations and complete the sequence in 104 ns. (Supplementary Fig. 3 shows
the microwave and flux pulses implementing the sequence.) The orange box
is the oracle O 5 cUij that encodes the solution x0 5 ij to the search problem
in a quantum phase. Note that the first half of the algorithm is identical to
the entangling sequence in Fig. 3, while the second half is essentially its
mirror image. b–g, Real part of rml obtained by state tomography after each
step of the algorithm with oracle O 5 cU10. Starting from | 0, 0æ (b), the
qubits are simultaneously rotated into a maximal superposition state
(c). The oracle then marks the solution, | 1, 0æ, by inverting its phase (d). The
Rp=2

y rotation on QL turns the state into the Bell state Yzj i, demonstrating
that the state is highly entangled at this stage. The Rp=2

y rotation on QR

produces a state identical to (d) (data not shown). The application of cU00

undoes the entanglement, producing a maximal superposition state (f). The
final rotations yield an output state (g) with fidelity F 5 85% to the correct
answer, | 1, 0æ.

Table 1 | Summary of algorithmic performance

Element Grover search oracle* Deutsch–Jozsa function{

f00 f01 f10 f11 f0 f1 f2 f3

Æ0,0 | r | 0,0æ Ideal 1 0 0 0 0 0 1 1
Measured 0.81(1) 0.08(1) 0.07(2) 0.065(7) 0.010(3) 0.014(5) 0.909(6) 0.841(9)

Æ0,1 | r | 0,1æ Ideal 0 1 0 0 0 0 0 0
Measured 0.066(7) 0.802(9) 0.05(1) 0.054(8) 0.012(4) 0.008(4) 0.031(8) 0.04(2)

Æ1,0 | r | 1,0æ Ideal 0 0 1 0 1 1 0 0
Measured 0.08(1) 0.05(1) 0.82(2) 0.07(1) 0.93(1) 0.93(1) 0.05(1) 0.04(1)

Æ1,1 | r | 1,1æ Ideal 0 0 0 1 0 0 0 0
Measured 0.05(2) 0.07(1) 0.06(1) 0.81(1) 0.05(1) 0.04(1) 0.012(9) 0.07(2)

Fidelity of the reconstructed output states of the Grover and Deutsch–Jozsa algorithms to their ideal outputs. These results suggest that, if combined with single-shot readout, the two algorithms
executed with this processor would give the correct answer with probability far exceeding the 50% success probability of the best classical algorithms limited to single calls of the oracle7 or function.
*Uncertainties are based on 10 repetitions.
{Uncertainties are based on 8 repetitions.
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In summary, we have demonstrated two-qubit quantum algo-
rithms using a superconducting circuit. The incorporation of local
flux control and joint-dispersive readout into cQED, together with a
tenfold increase in qubit coherence over previous two-qubit devices,
has enabled on-demand generation and detection of entanglement
and the implementation of the Grover and Deutsch–Jozsa algorithms.
The present architecture can be immediately expanded to several
qubits with controllable sz6sz interactions between nearest-
frequency neighbours, placing within reach the generation of

Greenberger–Horne–Zeilinger states and the exploration of basic
concepts of quantum error correction1,2.

METHODS SUMMARY
Device fabrication. A 180 nm Nb film was d.c.-magnetron sputtered on the epi-
polished surface of an R-plane corundum (a-Al2O3) wafer (2 inches diameter,
430mm thickness). Coplanar waveguide structures (cavity and flux-bias lines)
were patterned by optical lithography and fluorine-based reactive ion etching of
Nb. Transmon features (interdigitated capacitors and split junctions) were
patterned on 2 mm 3 7 mm chips using electron-beam lithography, double-
angle evaporation of Al (20/90 nm) with intermediate oxidation (15% O2 in
Ar at 15 torr for 12 min), and lift-off.

A completed device was cooled to 13 mK in a 3He-4He dilution refrigerator.
The refrigerator wiring is shown in Supplementary Fig. 2. Careful microwave
engineering of the sample holder and on-chip wirebonding across ground planes
were required to suppress spurious resonance modes on- and off-chip.
Simulations using Sonnet software assisted this iterative process. The sample
was enclosed in two layers of Cryoperm magnetic shielding, allowing high-fidelity
operation of the processor during unattended overnight runs.
cQED theory. The Tavis–Cummings28 Hamiltonian generalized to multi-level
transmon qubits26 is:

H~vCa{az
X

q[ L, Rf g

XN

j~0

vq
0j jj iq jh jqz aza{! "XN

j,k~0

g
q
jk jj iq kh jq

 !
ð1Þ

Here, vC is the bare cavity frequency, vq
0j~v0j ECq, EJq

! "
is the transition fre-

quency for qubit q from ground to excited state j, and g
q
jk~gqnjk ECq, EJq

! "
, with gq

a bare qubit–cavity coupling and njk a level-dependent coupling matrix element.
The dependence of these parameters on qubit charging energy ECq and Josephson

energy EJq is indicated. The flux control enters through EJq~Emax
Jq cos pWq

#
W0

! "$$ $$,
with Wq the flux through the qubit loop, and a linear flux–voltage relation
Wq~aqLVLzaqRVRzWq,0, accounting for crosstalk and offsets. (Crosstalk,
,30%, probably results from spatial distribution of flux-bias return currents on
the ground plane.) The above parameters are tightly constrained by the spectro-
scopy and transmission data shown (Figs 1b, 2a and b) and transmission data (not
shown) for the QL-cavity vacuum Rabi splitting. Simultaneously fitting the spectra
given by numerical diagonalization of the Hamiltonian (truncated to N 5 5 qubit
levels and 5 cavity photons) to these data gives Emax

JL Rð Þ=h~28:48 42:34ð ÞGHz,

ECL(R)/h 5 317(297) MHz, gL(R)/2p5 199(183) MHz. Cavity parameters are
vC/2p5 6.902 GHz and linewidth k/2p5 1 MHz.
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Figure 4 | Implementation of Grover’s search algorithm. a, Concatenation
of single-qubit and C-Phase gates implementing one iteration of Grover
searching. Without loss of generality, we have replaced the
Walsh–Hadamard transformations W~Rp

x Rp=2
y in the usual description of

the algorithm1,2 with Rp=2
y rotations in order to eliminate six single-qubit

rotations and complete the sequence in 104 ns. (Supplementary Fig. 3 shows
the microwave and flux pulses implementing the sequence.) The orange box
is the oracle O 5 cUij that encodes the solution x0 5 ij to the search problem
in a quantum phase. Note that the first half of the algorithm is identical to
the entangling sequence in Fig. 3, while the second half is essentially its
mirror image. b–g, Real part of rml obtained by state tomography after each
step of the algorithm with oracle O 5 cU10. Starting from | 0, 0æ (b), the
qubits are simultaneously rotated into a maximal superposition state
(c). The oracle then marks the solution, | 1, 0æ, by inverting its phase (d). The
Rp=2

y rotation on QL turns the state into the Bell state Yzj i, demonstrating
that the state is highly entangled at this stage. The Rp=2

y rotation on QR

produces a state identical to (d) (data not shown). The application of cU00

undoes the entanglement, producing a maximal superposition state (f). The
final rotations yield an output state (g) with fidelity F 5 85% to the correct
answer, | 1, 0æ.

Table 1 | Summary of algorithmic performance

Element Grover search oracle* Deutsch–Jozsa function{

f00 f01 f10 f11 f0 f1 f2 f3

Æ0,0 | r | 0,0æ Ideal 1 0 0 0 0 0 1 1
Measured 0.81(1) 0.08(1) 0.07(2) 0.065(7) 0.010(3) 0.014(5) 0.909(6) 0.841(9)

Æ0,1 | r | 0,1æ Ideal 0 1 0 0 0 0 0 0
Measured 0.066(7) 0.802(9) 0.05(1) 0.054(8) 0.012(4) 0.008(4) 0.031(8) 0.04(2)

Æ1,0 | r | 1,0æ Ideal 0 0 1 0 1 1 0 0
Measured 0.08(1) 0.05(1) 0.82(2) 0.07(1) 0.93(1) 0.93(1) 0.05(1) 0.04(1)

Æ1,1 | r | 1,1æ Ideal 0 0 0 1 0 0 0 0
Measured 0.05(2) 0.07(1) 0.06(1) 0.81(1) 0.05(1) 0.04(1) 0.012(9) 0.07(2)

Fidelity of the reconstructed output states of the Grover and Deutsch–Jozsa algorithms to their ideal outputs. These results suggest that, if combined with single-shot readout, the two algorithms
executed with this processor would give the correct answer with probability far exceeding the 50% success probability of the best classical algorithms limited to single calls of the oracle7 or function.
*Uncertainties are based on 10 repetitions.
{Uncertainties are based on 8 repetitions.
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density matrices obtained by state tomography after each step

In summary, we have demonstrated two-qubit quantum algo-
rithms using a superconducting circuit. The incorporation of local
flux control and joint-dispersive readout into cQED, together with a
tenfold increase in qubit coherence over previous two-qubit devices,
has enabled on-demand generation and detection of entanglement
and the implementation of the Grover and Deutsch–Jozsa algorithms.
The present architecture can be immediately expanded to several
qubits with controllable sz6sz interactions between nearest-
frequency neighbours, placing within reach the generation of

Greenberger–Horne–Zeilinger states and the exploration of basic
concepts of quantum error correction1,2.

METHODS SUMMARY
Device fabrication. A 180 nm Nb film was d.c.-magnetron sputtered on the epi-
polished surface of an R-plane corundum (a-Al2O3) wafer (2 inches diameter,
430mm thickness). Coplanar waveguide structures (cavity and flux-bias lines)
were patterned by optical lithography and fluorine-based reactive ion etching of
Nb. Transmon features (interdigitated capacitors and split junctions) were
patterned on 2 mm 3 7 mm chips using electron-beam lithography, double-
angle evaporation of Al (20/90 nm) with intermediate oxidation (15% O2 in
Ar at 15 torr for 12 min), and lift-off.

A completed device was cooled to 13 mK in a 3He-4He dilution refrigerator.
The refrigerator wiring is shown in Supplementary Fig. 2. Careful microwave
engineering of the sample holder and on-chip wirebonding across ground planes
were required to suppress spurious resonance modes on- and off-chip.
Simulations using Sonnet software assisted this iterative process. The sample
was enclosed in two layers of Cryoperm magnetic shielding, allowing high-fidelity
operation of the processor during unattended overnight runs.
cQED theory. The Tavis–Cummings28 Hamiltonian generalized to multi-level
transmon qubits26 is:

H~vCa{az
X

q[ L, Rf g

XN

j~0

vq
0j jj iq jh jqz aza{! "XN

j,k~0

g
q
jk jj iq kh jq

 !
ð1Þ

Here, vC is the bare cavity frequency, vq
0j~v0j ECq, EJq

! "
is the transition fre-

quency for qubit q from ground to excited state j, and g
q
jk~gqnjk ECq, EJq

! "
, with gq

a bare qubit–cavity coupling and njk a level-dependent coupling matrix element.
The dependence of these parameters on qubit charging energy ECq and Josephson

energy EJq is indicated. The flux control enters through EJq~Emax
Jq cos pWq

#
W0

! "$$ $$,
with Wq the flux through the qubit loop, and a linear flux–voltage relation
Wq~aqLVLzaqRVRzWq,0, accounting for crosstalk and offsets. (Crosstalk,
,30%, probably results from spatial distribution of flux-bias return currents on
the ground plane.) The above parameters are tightly constrained by the spectro-
scopy and transmission data shown (Figs 1b, 2a and b) and transmission data (not
shown) for the QL-cavity vacuum Rabi splitting. Simultaneously fitting the spectra
given by numerical diagonalization of the Hamiltonian (truncated to N 5 5 qubit
levels and 5 cavity photons) to these data gives Emax

JL Rð Þ=h~28:48 42:34ð ÞGHz,

ECL(R)/h 5 317(297) MHz, gL(R)/2p5 199(183) MHz. Cavity parameters are
vC/2p5 6.902 GHz and linewidth k/2p5 1 MHz.
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Figure 4 | Implementation of Grover’s search algorithm. a, Concatenation
of single-qubit and C-Phase gates implementing one iteration of Grover
searching. Without loss of generality, we have replaced the
Walsh–Hadamard transformations W~Rp

x Rp=2
y in the usual description of

the algorithm1,2 with Rp=2
y rotations in order to eliminate six single-qubit

rotations and complete the sequence in 104 ns. (Supplementary Fig. 3 shows
the microwave and flux pulses implementing the sequence.) The orange box
is the oracle O 5 cUij that encodes the solution x0 5 ij to the search problem
in a quantum phase. Note that the first half of the algorithm is identical to
the entangling sequence in Fig. 3, while the second half is essentially its
mirror image. b–g, Real part of rml obtained by state tomography after each
step of the algorithm with oracle O 5 cU10. Starting from | 0, 0æ (b), the
qubits are simultaneously rotated into a maximal superposition state
(c). The oracle then marks the solution, | 1, 0æ, by inverting its phase (d). The
Rp=2

y rotation on QL turns the state into the Bell state Yzj i, demonstrating
that the state is highly entangled at this stage. The Rp=2

y rotation on QR

produces a state identical to (d) (data not shown). The application of cU00

undoes the entanglement, producing a maximal superposition state (f). The
final rotations yield an output state (g) with fidelity F 5 85% to the correct
answer, | 1, 0æ.

Table 1 | Summary of algorithmic performance

Element Grover search oracle* Deutsch–Jozsa function{

f00 f01 f10 f11 f0 f1 f2 f3

Æ0,0 | r | 0,0æ Ideal 1 0 0 0 0 0 1 1
Measured 0.81(1) 0.08(1) 0.07(2) 0.065(7) 0.010(3) 0.014(5) 0.909(6) 0.841(9)

Æ0,1 | r | 0,1æ Ideal 0 1 0 0 0 0 0 0
Measured 0.066(7) 0.802(9) 0.05(1) 0.054(8) 0.012(4) 0.008(4) 0.031(8) 0.04(2)

Æ1,0 | r | 1,0æ Ideal 0 0 1 0 1 1 0 0
Measured 0.08(1) 0.05(1) 0.82(2) 0.07(1) 0.93(1) 0.93(1) 0.05(1) 0.04(1)

Æ1,1 | r | 1,1æ Ideal 0 0 0 1 0 0 0 0
Measured 0.05(2) 0.07(1) 0.06(1) 0.81(1) 0.05(1) 0.04(1) 0.012(9) 0.07(2)

Fidelity of the reconstructed output states of the Grover and Deutsch–Jozsa algorithms to their ideal outputs. These results suggest that, if combined with single-shot readout, the two algorithms
executed with this processor would give the correct answer with probability far exceeding the 50% success probability of the best classical algorithms limited to single calls of the oracle7 or function.
*Uncertainties are based on 10 repetitions.
{Uncertainties are based on 8 repetitions.
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!  We showed that quantum algorithms (Grover) can in 
principle be implemented using superconducting qubits 

!  Now we want to get closer to real computer 
!  Larger number of qubits 

!  We only need single-qubit and C-Phase gates because they are 
universal 

!  High fidelity of qubit operations 
!  For surface code at least 99% (“surface code threshold”) 

!  First step of error correction: entanglement of multiple qubits 
!  Generate maximally entangled Greenberger-Horne-Zeilinger (GHZ) 

state 
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Next Steps on the Road to Quantum 
Computation 

{ˆI,± ˆX/2,± ˆY /2,± ˆX,± ˆY } (29)

|00i+ |11ip
2

(30)

|000i+ |111ip
2

(31)

|0000i+ |1111ip
2

(32)

|00000i+ |11111ip
2

(33)

|GHZi = |00...0i+ |11...1ip
2

(34)

3
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Five-Qubit Architecture 
R. Barends et al., arXiv:1402.4848 (2014) 

2

and Y axes (Supplementary Information). We benchmark X
and Y axis ⇡ and ⇡/2 rotations, the Hadamard gate (imple-
mented with Y/2 followed by X), and Z axis rotations using
pulses on the frequency control line. From the data in Fig. 2
we extract the individual gate fidelities listed in the legend.
We find an average fidelity of 99.92 % over all gates and qubits
(Supplementary Information). The best fidelities are achieved
by optimising the pulse amplitude and frequency, and min-
imising 2-state leakage20 [Kelly, J., et al., in preparation].

We have also measured the performance when simulta-

FIG. 1: Architecture. (a) Optical image of the integrated Joseph-
son quantum processor, consisting of Al (dark) on sapphire (light).
The five cross-shaped devices are the Xmon variant of the trans-
mon qubit13, labelled Q0 � Q4, placed in a linear array. To the
left of the qubits are five meandering coplanar waveguide resonators
used for individual state readout. Control wiring is brought in from
the contact pads at the edge of the chip, ending at the right of the
qubits. (b) Circuit diagram. Our architecture employs direct, nearest-
neighbour coupling of the qubits (red/orange), made possible by the
nodal connectivity of the Xmon qubit. Using a single readout line,
each qubit can be measured using frequency-domain multiplexing
(blue). Individual qubits are driven through capacitively-coupled
microwave control lines (XY), and frequency control is achieved
through inductively-coupled dc lines (Z) (purple). (c) Schematic rep-
resentation of an entangling operation using a controlled-Z gate with
unitary representation UCZ: (I) Qubits at rest, at distinct frequen-
cies with minimal interaction. (II) When brought near resonance, the
state-dependent frequency shift brings about a rotation conditional
on the qubit states. (III) Qubits are returned to their rest frequency.

neously operating nearest or next-nearest qubits21, operating
them at dissimilar idle frequencies to minimise coupling. The
fidelities are essentially unchanged, with small added errors
< 2 · 10�4 (Supplementary Information), showing a high de-
gree of addressability for this architecture.

The two-qubit CZ gate is implemented by tuning one qubit
in frequency along a “fast adiabatic” trajectory which takes
the two-qubit |11i state close to the avoided-level crossing
with the |02i state, yielding a state-dependent relative phase
shift. This implementation is the natural choice for weakly
anharmonic, frequency-tunable qubits, as the other computa-
tional states are left unchanged8,22,23. Having the CZ gate adi-
abatic as well as fast is advantageous. An adiabatic trajectory
is easily optimised and allows for exponentially suppressing
leakage into the non-computational |02i-state with gate dura-
tion. Having a fast CZ gate minimises the accumulation of er-
rors from decoherence and unwanted entanglement with other
circuit elements, favourable for fault-tolerance.

FIG. 2: Single qubit randomised benchmarking. (a) A reference
experiment is performed by generating a sequence of m random Clif-
fords, which are inverted by the recovery Clifford Cr . A specific gate
(H) is tested using a sequence that interleaves H with m random
Cliffords. The difference between interleaved and reference decay
gives the gate fidelity. (b) Representative pulse sequence for a set
of four Cliffords and their recovery, generated with ⇡ and ⇡/2 ro-
tations about X and Y , displaying both the real (I) and imaginary
(Q) microwave pulse envelopes before up-conversion by quadrature
mixing to the qubit frequency. (c) Randomised benchmarking mea-
surement for the set of single-qubit gates for qubit Q2, plotting ref-
erence and gate fidelities as a function of the sequence length m;
the fidelity for each value of m was measured for k = 40 different
sequences. The fit to the reference set yields an average error per
Clifford of rref = 0.0011, consistent with an average gate fidelity of
1� rref/1.875 = 0.9994 (Supplementary Information). The dashed
lines indicate the thresholds for exceeding gate fidelities of 0.998 and
0.999. The fidelities for each of the single-qubit gates are tabulated
in the legend, we find that all gates have fidelities greater than 0.999.
Standard deviations are typically 5 · 10�5.

Xmon: cross-shaped 
Transmon qubit 
!  Long coherence time  
!  Fast control 

Coherent Josephson Qubit Suitable for Scalable Quantum Integrated Circuits

R. Barends, J. Kelly, A. Megrant, D. Sank, E. Jeffrey, Y. Chen, Y. Yin,* B. Chiaro, J. Mutus, C. Neill, P. O’Malley,
P. Roushan, J. Wenner, T. C. White, A.N. Cleland, and John M. Martinis

Department of Physics, University of California, Santa Barbara, California 93106, USA
(Received 5 April 2013; published 22 August 2013)

We demonstrate a planar, tunable superconducting qubit with energy relaxation times up to 44 !s. This
is achieved by using a geometry designed to both minimize radiative loss and reduce coupling to

materials-related defects. At these levels of coherence, we find a fine structure in the qubit energy lifetime

as a function of frequency, indicating the presence of a sparse population of incoherent, weakly coupled

two-level defects. We elucidate this defect physics by experimentally varying the geometry and by a

model analysis. Our ‘‘Xmon’’ qubit combines facile fabrication, straightforward connectivity, fast control,

and long coherence, opening a viable route to constructing a chip-based quantum computer.

DOI: 10.1103/PhysRevLett.111.080502 PACS numbers: 03.67.Lx, 03.65.Yz, 85.25.Cp

One of the outstanding challenges in building a quantum
computer is to balance coherence, connectivity, and control
in the qubits. Superconductivity provides an appealing
platform because it allows for scalability: the conduction
electrons condense into a macroscopic quantum state, and
large quantum integrated circuits can be made with many
elements having individual control lines. However, quan-
tum coherence in superconducting circuits has proven to be
very delicate, as it is easily disturbed by material defects,
electron system excitations, and radiative coupling to ex-
ternal wiring [1–8]. To minimize these and other effects,
many groups have recently begun embedding qubits in
three-dimensional superconducting cavities. These 3D
qubits show high coherence, with energy relaxation times
in 3D transmon qubits between 30 and 140 !s [9,10].

Here, we demonstrate a new design for a fully planar
superconducting qubit, based on the planar transmon
[11,12], with energy coherence times in excess of 40 !s.
Our approach balances coherence, connectivity, as well as
fast control. The qubits are frequency tunable, which allows
the implementation of fast two-qubit gates: a CONTROLLED-

Z gate [13–15] can then be implementedwith high fidelity in
25 ns [16]. With the coherence time exceeding single- and
two-qubit gate times by 3 orders of magnitude, we believe
that our device provides a key ingredient for implementing a
surface code quantum computer [17].

We also identify an incoherent decoherence mechanism,
arising from a sparse bath of weakly coupled defects. This
incoherent regime is made accessible by the long coher-
ence of our qubits. We explore this physics by visualizing
these defects in the measured quantum time-resolved
spectroscopy, by varying the qubit geometry, and by a
model analysis. These defects give rise to frequency-
dependent variations in the lifetime; our results may
also explain the variations observed in lifetimes of 3D
transmon qubits.

Our device is shown in Fig. 1(a), formed by patterning
the Al metal (light areas) and exposing the sapphire

substrate (dark areas). The qubit is the cross-shaped device.
We design the qubit with high-quality coplanar waveguide
capacitors, motivated by the recent advances with super-
conducting resonators, yielding a modular design with
straightforward connectivity. Its four arms connect to sepa-
rate elements, each having a different function: a coplanar
waveguide resonator for readout on the top, a quantum bus
resonator on the right to mediate coupling to other qubits,
XY control on the left to excite the qubit state, and Z
control on the bottom to tune the qubit frequency. The
cross is the qubit capacitor, which connects at the bottom to
the tunable Josephson junction, formed by the rectangular

readout line

(a)

readout
resonator

XY
control

Z control

quantum
bus

200 mµ

(b)
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S WW
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FIG. 1 (color online). (a) Optical micrograph of the planar
Xmon qubit, formed by the Al superconducting film (light)
and the exposed sapphire substrate (dark). The qubit is capaci-
tively coupled to a quarter wave readout resonator (top), a
quantum bus resonator (right), and an XY control line (left),
and inductively coupled to a Z control line (bottom). The Xmon
arm length is L. (b) The inset shows the shadow evaporated Al
junction layer in false color (blue regions). The junction size is
0:30! 0:20 !m2. The capacitor central linewidth is S, and the
gap width is W. (c) The electrical circuit of the qubit.
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!  Characterize fidelity of a gate independent of input state 
!  Interleave gate with random sequence of qubit operations  

11.04.2014 Joannis Koepsell, Tim Menke 28 

First Result: High-Fidelity Gates 

2

and Y axes (Supplementary Information). We benchmark X
and Y axis ⇡ and ⇡/2 rotations, the Hadamard gate (imple-
mented with Y/2 followed by X), and Z axis rotations using
pulses on the frequency control line. From the data in Fig. 2
we extract the individual gate fidelities listed in the legend.
We find an average fidelity of 99.92 % over all gates and qubits
(Supplementary Information). The best fidelities are achieved
by optimising the pulse amplitude and frequency, and min-
imising 2-state leakage20 [Kelly, J., et al., in preparation].

We have also measured the performance when simulta-

FIG. 1: Architecture. (a) Optical image of the integrated Joseph-
son quantum processor, consisting of Al (dark) on sapphire (light).
The five cross-shaped devices are the Xmon variant of the trans-
mon qubit13, labelled Q0 � Q4, placed in a linear array. To the
left of the qubits are five meandering coplanar waveguide resonators
used for individual state readout. Control wiring is brought in from
the contact pads at the edge of the chip, ending at the right of the
qubits. (b) Circuit diagram. Our architecture employs direct, nearest-
neighbour coupling of the qubits (red/orange), made possible by the
nodal connectivity of the Xmon qubit. Using a single readout line,
each qubit can be measured using frequency-domain multiplexing
(blue). Individual qubits are driven through capacitively-coupled
microwave control lines (XY), and frequency control is achieved
through inductively-coupled dc lines (Z) (purple). (c) Schematic rep-
resentation of an entangling operation using a controlled-Z gate with
unitary representation UCZ: (I) Qubits at rest, at distinct frequen-
cies with minimal interaction. (II) When brought near resonance, the
state-dependent frequency shift brings about a rotation conditional
on the qubit states. (III) Qubits are returned to their rest frequency.

neously operating nearest or next-nearest qubits21, operating
them at dissimilar idle frequencies to minimise coupling. The
fidelities are essentially unchanged, with small added errors
< 2 · 10�4 (Supplementary Information), showing a high de-
gree of addressability for this architecture.

The two-qubit CZ gate is implemented by tuning one qubit
in frequency along a “fast adiabatic” trajectory which takes
the two-qubit |11i state close to the avoided-level crossing
with the |02i state, yielding a state-dependent relative phase
shift. This implementation is the natural choice for weakly
anharmonic, frequency-tunable qubits, as the other computa-
tional states are left unchanged8,22,23. Having the CZ gate adi-
abatic as well as fast is advantageous. An adiabatic trajectory
is easily optimised and allows for exponentially suppressing
leakage into the non-computational |02i-state with gate dura-
tion. Having a fast CZ gate minimises the accumulation of er-
rors from decoherence and unwanted entanglement with other
circuit elements, favourable for fault-tolerance.

FIG. 2: Single qubit randomised benchmarking. (a) A reference
experiment is performed by generating a sequence of m random Clif-
fords, which are inverted by the recovery Clifford Cr . A specific gate
(H) is tested using a sequence that interleaves H with m random
Cliffords. The difference between interleaved and reference decay
gives the gate fidelity. (b) Representative pulse sequence for a set
of four Cliffords and their recovery, generated with ⇡ and ⇡/2 ro-
tations about X and Y , displaying both the real (I) and imaginary
(Q) microwave pulse envelopes before up-conversion by quadrature
mixing to the qubit frequency. (c) Randomised benchmarking mea-
surement for the set of single-qubit gates for qubit Q2, plotting ref-
erence and gate fidelities as a function of the sequence length m;
the fidelity for each value of m was measured for k = 40 different
sequences. The fit to the reference set yields an average error per
Clifford of rref = 0.0011, consistent with an average gate fidelity of
1� rref/1.875 = 0.9994 (Supplementary Information). The dashed
lines indicate the thresholds for exceeding gate fidelities of 0.998 and
0.999. The fidelities for each of the single-qubit gates are tabulated
in the legend, we find that all gates have fidelities greater than 0.999.
Standard deviations are typically 5 · 10�5.

3

FIG. 3: CZ gate physics and randomised benchmarking results.
(a) We use the the |1B1Ai and |0B2Ai avoided level crossing to
implement a high-fidelity CZ gate, with the fast adiabatic tuning
of qubit A giving a selective ⇡ phase change of the |1B1Ai state.
The energy level diagram shows qubit A approaching and leaving
the avoided level crossing from above (top, blue dashed line), fol-
lowing a fast (43 ns) yet effectively adiabatic trajectory (bottom,
solid blue line). Unwanted state leakage from |1B1Ai to |0B2Ai
(red dashed line) is minimised by adjusting the trajectory. (b) Ran-
domised benchmarking data (k = 100) of the CZ gate for the qubit
pair Q2 and Q3, using the two-qubit Clifford group C2 (Supplemen-
tary Information); reference data in black (rref = 0.0189), inter-
leaved in blue (rC2+CZ = 0.0244). Dashed lines indicate the thresh-
olds for gate fidelities of 0.98 and 0.99. We find a CZ gate fidelity of
0.9944± 0.0005 (uncertainty from bootstrapping). (c) Coherent mi-
crowave (XY) and frequency (Z) control of the quantum state while
performing a complex two-qubit algorithm; the sequence contains
over 500 gates, corresponding to the characteristic reference decay
of m = 55, and is over 7 µs long. The right panel shows an example
Clifford from the iSWAP class, comprised of single qubit rotations
and two CZ gates (Supplementary Information).

The benchmarking results of the CZ gate are shown in
Fig. 3b. Similar to the single-qubit case, we generate se-
quences of two-qubit Cliffords to produce a reference curve,

then interleave the CZ gate to extract the fidelity. An example
pulse sequence for an m = 55 Clifford sequence is shown in
Fig. 3c. We find a CZ gate fidelity of up to 99.44 ± 0.05 %,
consistent with the average error per Clifford (Supplementary
Information). We find fidelities between 99.0-99.44% on all
four pairs of nearest-neighbour qubits (Supplementary Infor-
mation). This comprises a clear demonstration of high-fidelity
single- and two-qubit gates in a multi-qubit Josephson quan-
tum processor. The two-qubit gate fidelity compares well with
the highest values reported for other mature quantum systems:
For nuclear magnetic resonance and ion traps, entangling gate
fidelites are as high as 99.5% and 99.3%11,12. Importantly, we
have verified by simulation that the experimentally obtained
gate fidelities are at the threshold for surface code quantum
error correction, see Supplementary Information.

We are optimistic that we can improve upon these gate fi-
delities with modest effort. The CZ gate fidelity is limited
by three error mechanisms: Decoherence (55% of the total
error), control error (24%), and state leakage (21%), see Sup-
plementary Information. Decoherence can be suppressed with
enhanced materials and optimised fabrication24,25. Imperfec-
tions in control arise primarily from reflections and stray in-
ductances in wiring, and can be improved using conventional
microwave techniques. Given the adiabatic nature of the CZ
gate, 2-state leakage can be suppressed by slightly increasing
the gate time [Martinis, J., et al., in preparation].

We showcase the modularity of this set of quantum logic
gates by constructing a maximally-entangled GHZ state
across all five qubits in our processor, as shown in Fig. 4a.
The N -qubit GHZ state |GHZi = (|0i⌦N + |1i⌦N )/

p
2 is

constructed with single and two-qubit gates, using simultane-
ous control and readout of all qubits. This algorithm is shown
in Fig. 4b, where the state is assembled by entangling one
additional qubit at a time. The algorithm is highly sensitive
to control error and decoherence on any computational ele-
ment. We fully characterise the Bell and GHZ states by us-
ing quantum state tomography9, where quadratic maximum
likelihood estimation is used to extract each density matrix
(⇢) from the measurement data, while satisfying the physi-
cal constraints that ⇢ be Hermitian, unit trace, and positive
semi-definite (Supplementary Information). The density ma-
trices are plotted in the traditional cityscape style, and show
significant elements only at the ideal locations. We find state
fidelities Tr

�p
⇢ideal⇢

p
⇢ideal

�
of 99.5±0.4 %, 96.0±0.5 %,

86.3 ± 0.5 % and 81.7 ± 0.5 % for the N = 2 Bell state and
N = 3, 4, 5 GHZ states. A GHZ state fidelity over 50 % satis-
fies the criterion for genuine entanglement26. It is interesting
to note that the ratio of the off-diagonal to diagonal ampli-
tudes |⇢|0i⌦N ,|1i⌦N |2/⇢|0i⌦N ,|0i⌦N⇢|1i⌦N ,|1i⌦N have the val-
ues 0.99, 0.98, 0.99 and 0.99, suggesting that dephasing is
small and/or uncorrelated. The five-qubit GHZ state is the
largest multi-qubit entanglement demonstrated to date in the
solid state8,9, with state fidelity similar to results obtained in
ion traps27. This demonstrates that complex quantum states
can be constructed with high fidelity in a modular fashion,
highlighting the potential for more intricate algorithms on this
multi-purpose quantum processor.

We have shown single and two-qubit gates with fidelities

Single-qubit gates C-Phase gate 

Average single-qubit gate fidelity: 
99.92% 
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Conclusion 

levels, producing a frequency shift f/2p of the lower branch with
respect to the sum fL 1 fR, in good agreement with a numerical dia-
gonalization of the generalized Tavis–Cummings Hamiltonian28 (see
Methods).

This shift is the mechanism of our conditional phase gate. Flux
pulses, adiabatic with respect to the j1, 1æ « j0, 2æ avoided crossing,
produce phase gates

U~

1 0 0 0

0 eiw01 0 0

0 0 eiw10 0

0 0 0 eiw11

0

BBB@

1

CCCA

in the computational Hilbert space. Here, wlr 5 2p#dflr(t)dt is the
dynamical phase acquired by jl, ræ, and dflr is the deviation of flr from
its value at point I. A VR pulse into point II such that
#f(t)dt 5 (2n 1 1)p with integer n implements a C-Phase gate,
because w11 5 w01 1 w10 2 #f(t)dt. This method of realizing a
C-Phase gate by adiabatically using the avoided crossing between
computational and non-computational states is generally applicable
to qubit implementations with finite anharmonicity, such as trans-
mons12 or phase qubits13. A similar approach involving higher excita-
tion levels but with non-adiabatic pulses was previously proposed29.
The negative anharmonicity permits the phase gate at point II to
occur before the onset of transverse coupling at point III.

Control of f by two orders of magnitude provides an excellent on-
off ratio for the C-Phase gate. Measurements of f obtained from
spectroscopy and from time-domain experiments show very good
agreement (Fig. 2c). The time-domain method measures the differ-
ence in the precession frequency of QL in two Ramsey-style experi-
ments, where a VR-pulse of varying duration (0–100 ns) is inserted
between p/2 rotations of QL, with QR either in the ground state j0æ or
excited into state j1æ. Using the time-domain approach, we measure a
residual f/2p< 1.2 MHz at point I (star in Fig. 2c). The theoretical f
obtained by numerical diagonalization shows reasonable agreement
with the data, except for a scale factor that is probably due to higher
modes of the cavity25, not included in the calculation.

The controlled phase interaction allows universal two-qubit gates.
As an example, we produce entangled states on demand (Fig. 3). The
pulse sequence in Fig. 3a generates any of the four Bell states,

Y+
!! "

~ 1ffiffi
2
p 0, 0j i+ 1, 1j ið Þ W+

!! "
~ 1ffiffi

2
p 0, 1j i+ 1, 0j ið Þ

depending on the choice of C-Phase gate cUij applied

(cUij l, rj i~ {1ð Þdil djr l, rj i, where d is Kronecker’s delta). We achieve
#f(t)dt 5p by tuning the amplitude of a 30 ns VR-pulse close to point
II and back. During the pulse, QR acquires a large dynamical phase
w01 < 260p. The four cUij gates differ by whether w01 and w10 are
even or odd multiples of p. We tune w01 over a 2p range by adjusting
the rising and falling edges of the pulse, and w10 by varying the
amplitude of a simultaneous weak VL-pulse (Supplementary Fig. 3).
The conditional phase #f(t)dt is largely independent of these two
adjustments.

To detect the entanglement, we reconstruct the two-qubit density
matrix r by quantum state tomography using joint dispersive read-
out9,22,24. A pulsed measurement of the homodyne voltage VH mea-
sures the operator:

M~b1sL
z zb2sR

z zb12sL
z6sR

z

Operation in the strong-dispersive regime23,24 makes the three con-
stant coefficients have approximately the same magnitude,
jb12j< jb1j, jb2j, enhancing sensitivity to two-qubit correlations. A
complete set of 15 linearly independent operators is built using sin-
gle-qubit rotations before measuring M. An ensemble average of each
operator is obtained by executing the sequence in Fig. 3a 450,000
times. The 15 average values are then input to a maximum-likelihood
estimator of r (Supplementary Information).

The inferred density matrices rml reveal in all four cases (Fig. 3b–e)
a high degree of two-qubit entanglement, which we quantify using
concurrence30, C. Values are listed in Fig. 3 legend, along with the
metrics of purity P(r) 5 Tr(r2) and fidelity to the target state jyæ,
F(r, y) 5 Æyjrjyæ. Note that there are several common definitions of
fidelity in the literature, and our definition is the square of the fidelity
used in refs 18 and 24. The quoted values significantly extend the state
of the art for solid-state entanglement18, and provide evidence that we
have a high-fidelity universal set of two-qubit gates.

One- and two-qubit gates can be concatenated to realize simple
algorithms, such as Grover’s quantum search1,2 shown in Fig. 4.
Given a function f(x) on the two-bit set x[ 00, 01, 10, 11f g such that
f(x) 5 0 except at some x0, where f(x0) 5 1, this well-known algo-
rithm can determine x0 with a single call of an oracle O that encodes

Figure 1 | Two-qubit cQED device, and cavity/qubit characterization.
a, Optical micrograph of four-port device with a coplanar waveguide cavity
bus coupling transmon qubits QL and QR (coloured red and blue in insets),
and local flux-bias lines providing fast qubit tuning. Microwave pulses at the
qubit transition frequencies fL and fR drive single-qubit rotations, and a
pulsed measurement of the cavity homodyne voltage VH (at frequency fC)
provides two-qubit readout. The flux-bias lines (bottom-left and top-right
ports) are coplanar waveguides with short-circuit termination next to their
target qubit. The termination geometry allows currents (IL and IR) on the
lines to couple flux through the split junctions (b, inset). b, Grey-scale

images of cavity transmission and of qubit spectroscopy as a function of VR,
showing local tuning of QR across the avoided crossing with QL (point III)
and across the vacuum Rabi splitting with the cavity (point IV). Semi-
transparent lines are theoretical best fits obtained from numerical
diagonalization of a generalized Tavis–Cummings Hamiltonian28. Points I
and II are the operating points of the processor. Preparation, single-qubit
operations and measurements are performed at point I, and a C-Phase gate is
achieved by pulsing into point II. Numerals indicate excitation level of QL

(red) and QR (blue) in the spectroscopy at point I.
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FIG. 3: CZ gate physics and randomised benchmarking results.
(a) We use the the |1B1Ai and |0B2Ai avoided level crossing to
implement a high-fidelity CZ gate, with the fast adiabatic tuning
of qubit A giving a selective ⇡ phase change of the |1B1Ai state.
The energy level diagram shows qubit A approaching and leaving
the avoided level crossing from above (top, blue dashed line), fol-
lowing a fast (43 ns) yet effectively adiabatic trajectory (bottom,
solid blue line). Unwanted state leakage from |1B1Ai to |0B2Ai
(red dashed line) is minimised by adjusting the trajectory. (b) Ran-
domised benchmarking data (k = 100) of the CZ gate for the qubit
pair Q2 and Q3, using the two-qubit Clifford group C2 (Supplemen-
tary Information); reference data in black (rref = 0.0189), inter-
leaved in blue (rC2+CZ = 0.0244). Dashed lines indicate the thresh-
olds for gate fidelities of 0.98 and 0.99. We find a CZ gate fidelity of
0.9944± 0.0005 (uncertainty from bootstrapping). (c) Coherent mi-
crowave (XY) and frequency (Z) control of the quantum state while
performing a complex two-qubit algorithm; the sequence contains
over 500 gates, corresponding to the characteristic reference decay
of m = 55, and is over 7 µs long. The right panel shows an example
Clifford from the iSWAP class, comprised of single qubit rotations
and two CZ gates (Supplementary Information).

The benchmarking results of the CZ gate are shown in
Fig. 3b. Similar to the single-qubit case, we generate se-
quences of two-qubit Cliffords to produce a reference curve,

then interleave the CZ gate to extract the fidelity. An example
pulse sequence for an m = 55 Clifford sequence is shown in
Fig. 3c. We find a CZ gate fidelity of up to 99.44 ± 0.05 %,
consistent with the average error per Clifford (Supplementary
Information). We find fidelities between 99.0-99.44% on all
four pairs of nearest-neighbour qubits (Supplementary Infor-
mation). This comprises a clear demonstration of high-fidelity
single- and two-qubit gates in a multi-qubit Josephson quan-
tum processor. The two-qubit gate fidelity compares well with
the highest values reported for other mature quantum systems:
For nuclear magnetic resonance and ion traps, entangling gate
fidelites are as high as 99.5% and 99.3%11,12. Importantly, we
have verified by simulation that the experimentally obtained
gate fidelities are at the threshold for surface code quantum
error correction, see Supplementary Information.

We are optimistic that we can improve upon these gate fi-
delities with modest effort. The CZ gate fidelity is limited
by three error mechanisms: Decoherence (55% of the total
error), control error (24%), and state leakage (21%), see Sup-
plementary Information. Decoherence can be suppressed with
enhanced materials and optimised fabrication24,25. Imperfec-
tions in control arise primarily from reflections and stray in-
ductances in wiring, and can be improved using conventional
microwave techniques. Given the adiabatic nature of the CZ
gate, 2-state leakage can be suppressed by slightly increasing
the gate time [Martinis, J., et al., in preparation].

We showcase the modularity of this set of quantum logic
gates by constructing a maximally-entangled GHZ state
across all five qubits in our processor, as shown in Fig. 4a.
The N -qubit GHZ state |GHZi = (|0i⌦N + |1i⌦N )/

p
2 is

constructed with single and two-qubit gates, using simultane-
ous control and readout of all qubits. This algorithm is shown
in Fig. 4b, where the state is assembled by entangling one
additional qubit at a time. The algorithm is highly sensitive
to control error and decoherence on any computational ele-
ment. We fully characterise the Bell and GHZ states by us-
ing quantum state tomography9, where quadratic maximum
likelihood estimation is used to extract each density matrix
(⇢) from the measurement data, while satisfying the physi-
cal constraints that ⇢ be Hermitian, unit trace, and positive
semi-definite (Supplementary Information). The density ma-
trices are plotted in the traditional cityscape style, and show
significant elements only at the ideal locations. We find state
fidelities Tr

�p
⇢ideal⇢

p
⇢ideal

�
of 99.5±0.4 %, 96.0±0.5 %,

86.3 ± 0.5 % and 81.7 ± 0.5 % for the N = 2 Bell state and
N = 3, 4, 5 GHZ states. A GHZ state fidelity over 50 % satis-
fies the criterion for genuine entanglement26. It is interesting
to note that the ratio of the off-diagonal to diagonal ampli-
tudes |⇢|0i⌦N ,|1i⌦N |2/⇢|0i⌦N ,|0i⌦N⇢|1i⌦N ,|1i⌦N have the val-
ues 0.99, 0.98, 0.99 and 0.99, suggesting that dephasing is
small and/or uncorrelated. The five-qubit GHZ state is the
largest multi-qubit entanglement demonstrated to date in the
solid state8,9, with state fidelity similar to results obtained in
ion traps27. This demonstrates that complex quantum states
can be constructed with high fidelity in a modular fashion,
highlighting the potential for more intricate algorithms on this
multi-purpose quantum processor.

We have shown single and two-qubit gates with fidelities

2

and Y axes (Supplementary Information). We benchmark X
and Y axis ⇡ and ⇡/2 rotations, the Hadamard gate (imple-
mented with Y/2 followed by X), and Z axis rotations using
pulses on the frequency control line. From the data in Fig. 2
we extract the individual gate fidelities listed in the legend.
We find an average fidelity of 99.92 % over all gates and qubits
(Supplementary Information). The best fidelities are achieved
by optimising the pulse amplitude and frequency, and min-
imising 2-state leakage20 [Kelly, J., et al., in preparation].

We have also measured the performance when simulta-

FIG. 1: Architecture. (a) Optical image of the integrated Joseph-
son quantum processor, consisting of Al (dark) on sapphire (light).
The five cross-shaped devices are the Xmon variant of the trans-
mon qubit13, labelled Q0 � Q4, placed in a linear array. To the
left of the qubits are five meandering coplanar waveguide resonators
used for individual state readout. Control wiring is brought in from
the contact pads at the edge of the chip, ending at the right of the
qubits. (b) Circuit diagram. Our architecture employs direct, nearest-
neighbour coupling of the qubits (red/orange), made possible by the
nodal connectivity of the Xmon qubit. Using a single readout line,
each qubit can be measured using frequency-domain multiplexing
(blue). Individual qubits are driven through capacitively-coupled
microwave control lines (XY), and frequency control is achieved
through inductively-coupled dc lines (Z) (purple). (c) Schematic rep-
resentation of an entangling operation using a controlled-Z gate with
unitary representation UCZ: (I) Qubits at rest, at distinct frequen-
cies with minimal interaction. (II) When brought near resonance, the
state-dependent frequency shift brings about a rotation conditional
on the qubit states. (III) Qubits are returned to their rest frequency.

neously operating nearest or next-nearest qubits21, operating
them at dissimilar idle frequencies to minimise coupling. The
fidelities are essentially unchanged, with small added errors
< 2 · 10�4 (Supplementary Information), showing a high de-
gree of addressability for this architecture.

The two-qubit CZ gate is implemented by tuning one qubit
in frequency along a “fast adiabatic” trajectory which takes
the two-qubit |11i state close to the avoided-level crossing
with the |02i state, yielding a state-dependent relative phase
shift. This implementation is the natural choice for weakly
anharmonic, frequency-tunable qubits, as the other computa-
tional states are left unchanged8,22,23. Having the CZ gate adi-
abatic as well as fast is advantageous. An adiabatic trajectory
is easily optimised and allows for exponentially suppressing
leakage into the non-computational |02i-state with gate dura-
tion. Having a fast CZ gate minimises the accumulation of er-
rors from decoherence and unwanted entanglement with other
circuit elements, favourable for fault-tolerance.

FIG. 2: Single qubit randomised benchmarking. (a) A reference
experiment is performed by generating a sequence of m random Clif-
fords, which are inverted by the recovery Clifford Cr . A specific gate
(H) is tested using a sequence that interleaves H with m random
Cliffords. The difference between interleaved and reference decay
gives the gate fidelity. (b) Representative pulse sequence for a set
of four Cliffords and their recovery, generated with ⇡ and ⇡/2 ro-
tations about X and Y , displaying both the real (I) and imaginary
(Q) microwave pulse envelopes before up-conversion by quadrature
mixing to the qubit frequency. (c) Randomised benchmarking mea-
surement for the set of single-qubit gates for qubit Q2, plotting ref-
erence and gate fidelities as a function of the sequence length m;
the fidelity for each value of m was measured for k = 40 different
sequences. The fit to the reference set yields an average error per
Clifford of rref = 0.0011, consistent with an average gate fidelity of
1� rref/1.875 = 0.9994 (Supplementary Information). The dashed
lines indicate the thresholds for exceeding gate fidelities of 0.998 and
0.999. The fidelities for each of the single-qubit gates are tabulated
in the legend, we find that all gates have fidelities greater than 0.999.
Standard deviations are typically 5 · 10�5.
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and Y axes (Supplementary Information). We benchmark X
and Y axis ⇡ and ⇡/2 rotations, the Hadamard gate (imple-
mented with Y/2 followed by X), and Z axis rotations using
pulses on the frequency control line. From the data in Fig. 2
we extract the individual gate fidelities listed in the legend.
We find an average fidelity of 99.92 % over all gates and qubits
(Supplementary Information). The best fidelities are achieved
by optimising the pulse amplitude and frequency, and min-
imising 2-state leakage20 [Kelly, J., et al., in preparation].

We have also measured the performance when simulta-

FIG. 1: Architecture. (a) Optical image of the integrated Joseph-
son quantum processor, consisting of Al (dark) on sapphire (light).
The five cross-shaped devices are the Xmon variant of the trans-
mon qubit13, labelled Q0 � Q4, placed in a linear array. To the
left of the qubits are five meandering coplanar waveguide resonators
used for individual state readout. Control wiring is brought in from
the contact pads at the edge of the chip, ending at the right of the
qubits. (b) Circuit diagram. Our architecture employs direct, nearest-
neighbour coupling of the qubits (red/orange), made possible by the
nodal connectivity of the Xmon qubit. Using a single readout line,
each qubit can be measured using frequency-domain multiplexing
(blue). Individual qubits are driven through capacitively-coupled
microwave control lines (XY), and frequency control is achieved
through inductively-coupled dc lines (Z) (purple). (c) Schematic rep-
resentation of an entangling operation using a controlled-Z gate with
unitary representation UCZ: (I) Qubits at rest, at distinct frequen-
cies with minimal interaction. (II) When brought near resonance, the
state-dependent frequency shift brings about a rotation conditional
on the qubit states. (III) Qubits are returned to their rest frequency.

neously operating nearest or next-nearest qubits21, operating
them at dissimilar idle frequencies to minimise coupling. The
fidelities are essentially unchanged, with small added errors
< 2 · 10�4 (Supplementary Information), showing a high de-
gree of addressability for this architecture.

The two-qubit CZ gate is implemented by tuning one qubit
in frequency along a “fast adiabatic” trajectory which takes
the two-qubit |11i state close to the avoided-level crossing
with the |02i state, yielding a state-dependent relative phase
shift. This implementation is the natural choice for weakly
anharmonic, frequency-tunable qubits, as the other computa-
tional states are left unchanged8,22,23. Having the CZ gate adi-
abatic as well as fast is advantageous. An adiabatic trajectory
is easily optimised and allows for exponentially suppressing
leakage into the non-computational |02i-state with gate dura-
tion. Having a fast CZ gate minimises the accumulation of er-
rors from decoherence and unwanted entanglement with other
circuit elements, favourable for fault-tolerance.

FIG. 2: Single qubit randomised benchmarking. (a) A reference
experiment is performed by generating a sequence of m random Clif-
fords, which are inverted by the recovery Clifford Cr . A specific gate
(H) is tested using a sequence that interleaves H with m random
Cliffords. The difference between interleaved and reference decay
gives the gate fidelity. (b) Representative pulse sequence for a set
of four Cliffords and their recovery, generated with ⇡ and ⇡/2 ro-
tations about X and Y , displaying both the real (I) and imaginary
(Q) microwave pulse envelopes before up-conversion by quadrature
mixing to the qubit frequency. (c) Randomised benchmarking mea-
surement for the set of single-qubit gates for qubit Q2, plotting ref-
erence and gate fidelities as a function of the sequence length m;
the fidelity for each value of m was measured for k = 40 different
sequences. The fit to the reference set yields an average error per
Clifford of rref = 0.0011, consistent with an average gate fidelity of
1� rref/1.875 = 0.9994 (Supplementary Information). The dashed
lines indicate the thresholds for exceeding gate fidelities of 0.998 and
0.999. The fidelities for each of the single-qubit gates are tabulated
in the legend, we find that all gates have fidelities greater than 0.999.
Standard deviations are typically 5 · 10�5.
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and Y axes (Supplementary Information). We benchmark X
and Y axis ⇡ and ⇡/2 rotations, the Hadamard gate (imple-
mented with Y/2 followed by X), and Z axis rotations using
pulses on the frequency control line. From the data in Fig. 2
we extract the individual gate fidelities listed in the legend.
We find an average fidelity of 99.92 % over all gates and qubits
(Supplementary Information). The best fidelities are achieved
by optimising the pulse amplitude and frequency, and min-
imising 2-state leakage20 [Kelly, J., et al., in preparation].

We have also measured the performance when simulta-

FIG. 1: Architecture. (a) Optical image of the integrated Joseph-
son quantum processor, consisting of Al (dark) on sapphire (light).
The five cross-shaped devices are the Xmon variant of the trans-
mon qubit13, labelled Q0 � Q4, placed in a linear array. To the
left of the qubits are five meandering coplanar waveguide resonators
used for individual state readout. Control wiring is brought in from
the contact pads at the edge of the chip, ending at the right of the
qubits. (b) Circuit diagram. Our architecture employs direct, nearest-
neighbour coupling of the qubits (red/orange), made possible by the
nodal connectivity of the Xmon qubit. Using a single readout line,
each qubit can be measured using frequency-domain multiplexing
(blue). Individual qubits are driven through capacitively-coupled
microwave control lines (XY), and frequency control is achieved
through inductively-coupled dc lines (Z) (purple). (c) Schematic rep-
resentation of an entangling operation using a controlled-Z gate with
unitary representation UCZ: (I) Qubits at rest, at distinct frequen-
cies with minimal interaction. (II) When brought near resonance, the
state-dependent frequency shift brings about a rotation conditional
on the qubit states. (III) Qubits are returned to their rest frequency.

neously operating nearest or next-nearest qubits21, operating
them at dissimilar idle frequencies to minimise coupling. The
fidelities are essentially unchanged, with small added errors
< 2 · 10�4 (Supplementary Information), showing a high de-
gree of addressability for this architecture.

The two-qubit CZ gate is implemented by tuning one qubit
in frequency along a “fast adiabatic” trajectory which takes
the two-qubit |11i state close to the avoided-level crossing
with the |02i state, yielding a state-dependent relative phase
shift. This implementation is the natural choice for weakly
anharmonic, frequency-tunable qubits, as the other computa-
tional states are left unchanged8,22,23. Having the CZ gate adi-
abatic as well as fast is advantageous. An adiabatic trajectory
is easily optimised and allows for exponentially suppressing
leakage into the non-computational |02i-state with gate dura-
tion. Having a fast CZ gate minimises the accumulation of er-
rors from decoherence and unwanted entanglement with other
circuit elements, favourable for fault-tolerance.

FIG. 2: Single qubit randomised benchmarking. (a) A reference
experiment is performed by generating a sequence of m random Clif-
fords, which are inverted by the recovery Clifford Cr . A specific gate
(H) is tested using a sequence that interleaves H with m random
Cliffords. The difference between interleaved and reference decay
gives the gate fidelity. (b) Representative pulse sequence for a set
of four Cliffords and their recovery, generated with ⇡ and ⇡/2 ro-
tations about X and Y , displaying both the real (I) and imaginary
(Q) microwave pulse envelopes before up-conversion by quadrature
mixing to the qubit frequency. (c) Randomised benchmarking mea-
surement for the set of single-qubit gates for qubit Q2, plotting ref-
erence and gate fidelities as a function of the sequence length m;
the fidelity for each value of m was measured for k = 40 different
sequences. The fit to the reference set yields an average error per
Clifford of rref = 0.0011, consistent with an average gate fidelity of
1� rref/1.875 = 0.9994 (Supplementary Information). The dashed
lines indicate the thresholds for exceeding gate fidelities of 0.998 and
0.999. The fidelities for each of the single-qubit gates are tabulated
in the legend, we find that all gates have fidelities greater than 0.999.
Standard deviations are typically 5 · 10�5.
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FIG. 3: CZ gate physics and randomised benchmarking results.
(a) We use the the |1B1Ai and |0B2Ai avoided level crossing to
implement a high-fidelity CZ gate, with the fast adiabatic tuning
of qubit A giving a selective ⇡ phase change of the |1B1Ai state.
The energy level diagram shows qubit A approaching and leaving
the avoided level crossing from above (top, blue dashed line), fol-
lowing a fast (43 ns) yet effectively adiabatic trajectory (bottom,
solid blue line). Unwanted state leakage from |1B1Ai to |0B2Ai
(red dashed line) is minimised by adjusting the trajectory. (b) Ran-
domised benchmarking data (k = 100) of the CZ gate for the qubit
pair Q2 and Q3, using the two-qubit Clifford group C2 (Supplemen-
tary Information); reference data in black (rref = 0.0189), inter-
leaved in blue (rC2+CZ = 0.0244). Dashed lines indicate the thresh-
olds for gate fidelities of 0.98 and 0.99. We find a CZ gate fidelity of
0.9944± 0.0005 (uncertainty from bootstrapping). (c) Coherent mi-
crowave (XY) and frequency (Z) control of the quantum state while
performing a complex two-qubit algorithm; the sequence contains
over 500 gates, corresponding to the characteristic reference decay
of m = 55, and is over 7 µs long. The right panel shows an example
Clifford from the iSWAP class, comprised of single qubit rotations
and two CZ gates (Supplementary Information).

The benchmarking results of the CZ gate are shown in
Fig. 3b. Similar to the single-qubit case, we generate se-
quences of two-qubit Cliffords to produce a reference curve,

then interleave the CZ gate to extract the fidelity. An example
pulse sequence for an m = 55 Clifford sequence is shown in
Fig. 3c. We find a CZ gate fidelity of up to 99.44 ± 0.05 %,
consistent with the average error per Clifford (Supplementary
Information). We find fidelities between 99.0-99.44% on all
four pairs of nearest-neighbour qubits (Supplementary Infor-
mation). This comprises a clear demonstration of high-fidelity
single- and two-qubit gates in a multi-qubit Josephson quan-
tum processor. The two-qubit gate fidelity compares well with
the highest values reported for other mature quantum systems:
For nuclear magnetic resonance and ion traps, entangling gate
fidelites are as high as 99.5% and 99.3%11,12. Importantly, we
have verified by simulation that the experimentally obtained
gate fidelities are at the threshold for surface code quantum
error correction, see Supplementary Information.

We are optimistic that we can improve upon these gate fi-
delities with modest effort. The CZ gate fidelity is limited
by three error mechanisms: Decoherence (55% of the total
error), control error (24%), and state leakage (21%), see Sup-
plementary Information. Decoherence can be suppressed with
enhanced materials and optimised fabrication24,25. Imperfec-
tions in control arise primarily from reflections and stray in-
ductances in wiring, and can be improved using conventional
microwave techniques. Given the adiabatic nature of the CZ
gate, 2-state leakage can be suppressed by slightly increasing
the gate time [Martinis, J., et al., in preparation].

We showcase the modularity of this set of quantum logic
gates by constructing a maximally-entangled GHZ state
across all five qubits in our processor, as shown in Fig. 4a.
The N -qubit GHZ state |GHZi = (|0i⌦N + |1i⌦N )/

p
2 is

constructed with single and two-qubit gates, using simultane-
ous control and readout of all qubits. This algorithm is shown
in Fig. 4b, where the state is assembled by entangling one
additional qubit at a time. The algorithm is highly sensitive
to control error and decoherence on any computational ele-
ment. We fully characterise the Bell and GHZ states by us-
ing quantum state tomography9, where quadratic maximum
likelihood estimation is used to extract each density matrix
(⇢) from the measurement data, while satisfying the physi-
cal constraints that ⇢ be Hermitian, unit trace, and positive
semi-definite (Supplementary Information). The density ma-
trices are plotted in the traditional cityscape style, and show
significant elements only at the ideal locations. We find state
fidelities Tr

�p
⇢ideal⇢

p
⇢ideal

�
of 99.5±0.4 %, 96.0±0.5 %,

86.3 ± 0.5 % and 81.7 ± 0.5 % for the N = 2 Bell state and
N = 3, 4, 5 GHZ states. A GHZ state fidelity over 50 % satis-
fies the criterion for genuine entanglement26. It is interesting
to note that the ratio of the off-diagonal to diagonal ampli-
tudes |⇢|0i⌦N ,|1i⌦N |2/⇢|0i⌦N ,|0i⌦N⇢|1i⌦N ,|1i⌦N have the val-
ues 0.99, 0.98, 0.99 and 0.99, suggesting that dephasing is
small and/or uncorrelated. The five-qubit GHZ state is the
largest multi-qubit entanglement demonstrated to date in the
solid state8,9, with state fidelity similar to results obtained in
ion traps27. This demonstrates that complex quantum states
can be constructed with high fidelity in a modular fashion,
highlighting the potential for more intricate algorithms on this
multi-purpose quantum processor.

We have shown single and two-qubit gates with fidelities
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!  Characterize fidelity of a gate independent of input state 
!  “Sequence of Cliffords”: Random sequence of qubit 

operations 
!  Example: for a single qubit, the sequence consists of randomly 

chosen gates from  
!  Experimental procedure: 

1)  Apply sequence of Cliffords 
2)  Apply qubit operation we want to characterize 
3)  Apply recovery sequence that makes the first sequence the 

identity 
!  “Reference” obtained by leaving out step 2 
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Randomised Benchmarking of Qubit Operations 

Kelly 2014 

{ˆI,± ˆX/2,± ˆY /2,± ˆX,± ˆY } (29)

3
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First Result: High-Fidelity Gates 

2

and Y axes (Supplementary Information). We benchmark X
and Y axis ⇡ and ⇡/2 rotations, the Hadamard gate (imple-
mented with Y/2 followed by X), and Z axis rotations using
pulses on the frequency control line. From the data in Fig. 2
we extract the individual gate fidelities listed in the legend.
We find an average fidelity of 99.92 % over all gates and qubits
(Supplementary Information). The best fidelities are achieved
by optimising the pulse amplitude and frequency, and min-
imising 2-state leakage20 [Kelly, J., et al., in preparation].

We have also measured the performance when simulta-

FIG. 1: Architecture. (a) Optical image of the integrated Joseph-
son quantum processor, consisting of Al (dark) on sapphire (light).
The five cross-shaped devices are the Xmon variant of the trans-
mon qubit13, labelled Q0 � Q4, placed in a linear array. To the
left of the qubits are five meandering coplanar waveguide resonators
used for individual state readout. Control wiring is brought in from
the contact pads at the edge of the chip, ending at the right of the
qubits. (b) Circuit diagram. Our architecture employs direct, nearest-
neighbour coupling of the qubits (red/orange), made possible by the
nodal connectivity of the Xmon qubit. Using a single readout line,
each qubit can be measured using frequency-domain multiplexing
(blue). Individual qubits are driven through capacitively-coupled
microwave control lines (XY), and frequency control is achieved
through inductively-coupled dc lines (Z) (purple). (c) Schematic rep-
resentation of an entangling operation using a controlled-Z gate with
unitary representation UCZ: (I) Qubits at rest, at distinct frequen-
cies with minimal interaction. (II) When brought near resonance, the
state-dependent frequency shift brings about a rotation conditional
on the qubit states. (III) Qubits are returned to their rest frequency.

neously operating nearest or next-nearest qubits21, operating
them at dissimilar idle frequencies to minimise coupling. The
fidelities are essentially unchanged, with small added errors
< 2 · 10�4 (Supplementary Information), showing a high de-
gree of addressability for this architecture.

The two-qubit CZ gate is implemented by tuning one qubit
in frequency along a “fast adiabatic” trajectory which takes
the two-qubit |11i state close to the avoided-level crossing
with the |02i state, yielding a state-dependent relative phase
shift. This implementation is the natural choice for weakly
anharmonic, frequency-tunable qubits, as the other computa-
tional states are left unchanged8,22,23. Having the CZ gate adi-
abatic as well as fast is advantageous. An adiabatic trajectory
is easily optimised and allows for exponentially suppressing
leakage into the non-computational |02i-state with gate dura-
tion. Having a fast CZ gate minimises the accumulation of er-
rors from decoherence and unwanted entanglement with other
circuit elements, favourable for fault-tolerance.

FIG. 2: Single qubit randomised benchmarking. (a) A reference
experiment is performed by generating a sequence of m random Clif-
fords, which are inverted by the recovery Clifford Cr . A specific gate
(H) is tested using a sequence that interleaves H with m random
Cliffords. The difference between interleaved and reference decay
gives the gate fidelity. (b) Representative pulse sequence for a set
of four Cliffords and their recovery, generated with ⇡ and ⇡/2 ro-
tations about X and Y , displaying both the real (I) and imaginary
(Q) microwave pulse envelopes before up-conversion by quadrature
mixing to the qubit frequency. (c) Randomised benchmarking mea-
surement for the set of single-qubit gates for qubit Q2, plotting ref-
erence and gate fidelities as a function of the sequence length m;
the fidelity for each value of m was measured for k = 40 different
sequences. The fit to the reference set yields an average error per
Clifford of rref = 0.0011, consistent with an average gate fidelity of
1� rref/1.875 = 0.9994 (Supplementary Information). The dashed
lines indicate the thresholds for exceeding gate fidelities of 0.998 and
0.999. The fidelities for each of the single-qubit gates are tabulated
in the legend, we find that all gates have fidelities greater than 0.999.
Standard deviations are typically 5 · 10�5.

3

FIG. 3: CZ gate physics and randomised benchmarking results.
(a) We use the the |1B1Ai and |0B2Ai avoided level crossing to
implement a high-fidelity CZ gate, with the fast adiabatic tuning
of qubit A giving a selective ⇡ phase change of the |1B1Ai state.
The energy level diagram shows qubit A approaching and leaving
the avoided level crossing from above (top, blue dashed line), fol-
lowing a fast (43 ns) yet effectively adiabatic trajectory (bottom,
solid blue line). Unwanted state leakage from |1B1Ai to |0B2Ai
(red dashed line) is minimised by adjusting the trajectory. (b) Ran-
domised benchmarking data (k = 100) of the CZ gate for the qubit
pair Q2 and Q3, using the two-qubit Clifford group C2 (Supplemen-
tary Information); reference data in black (rref = 0.0189), inter-
leaved in blue (rC2+CZ = 0.0244). Dashed lines indicate the thresh-
olds for gate fidelities of 0.98 and 0.99. We find a CZ gate fidelity of
0.9944± 0.0005 (uncertainty from bootstrapping). (c) Coherent mi-
crowave (XY) and frequency (Z) control of the quantum state while
performing a complex two-qubit algorithm; the sequence contains
over 500 gates, corresponding to the characteristic reference decay
of m = 55, and is over 7 µs long. The right panel shows an example
Clifford from the iSWAP class, comprised of single qubit rotations
and two CZ gates (Supplementary Information).

The benchmarking results of the CZ gate are shown in
Fig. 3b. Similar to the single-qubit case, we generate se-
quences of two-qubit Cliffords to produce a reference curve,

then interleave the CZ gate to extract the fidelity. An example
pulse sequence for an m = 55 Clifford sequence is shown in
Fig. 3c. We find a CZ gate fidelity of up to 99.44 ± 0.05 %,
consistent with the average error per Clifford (Supplementary
Information). We find fidelities between 99.0-99.44% on all
four pairs of nearest-neighbour qubits (Supplementary Infor-
mation). This comprises a clear demonstration of high-fidelity
single- and two-qubit gates in a multi-qubit Josephson quan-
tum processor. The two-qubit gate fidelity compares well with
the highest values reported for other mature quantum systems:
For nuclear magnetic resonance and ion traps, entangling gate
fidelites are as high as 99.5% and 99.3%11,12. Importantly, we
have verified by simulation that the experimentally obtained
gate fidelities are at the threshold for surface code quantum
error correction, see Supplementary Information.

We are optimistic that we can improve upon these gate fi-
delities with modest effort. The CZ gate fidelity is limited
by three error mechanisms: Decoherence (55% of the total
error), control error (24%), and state leakage (21%), see Sup-
plementary Information. Decoherence can be suppressed with
enhanced materials and optimised fabrication24,25. Imperfec-
tions in control arise primarily from reflections and stray in-
ductances in wiring, and can be improved using conventional
microwave techniques. Given the adiabatic nature of the CZ
gate, 2-state leakage can be suppressed by slightly increasing
the gate time [Martinis, J., et al., in preparation].

We showcase the modularity of this set of quantum logic
gates by constructing a maximally-entangled GHZ state
across all five qubits in our processor, as shown in Fig. 4a.
The N -qubit GHZ state |GHZi = (|0i⌦N + |1i⌦N )/

p
2 is

constructed with single and two-qubit gates, using simultane-
ous control and readout of all qubits. This algorithm is shown
in Fig. 4b, where the state is assembled by entangling one
additional qubit at a time. The algorithm is highly sensitive
to control error and decoherence on any computational ele-
ment. We fully characterise the Bell and GHZ states by us-
ing quantum state tomography9, where quadratic maximum
likelihood estimation is used to extract each density matrix
(⇢) from the measurement data, while satisfying the physi-
cal constraints that ⇢ be Hermitian, unit trace, and positive
semi-definite (Supplementary Information). The density ma-
trices are plotted in the traditional cityscape style, and show
significant elements only at the ideal locations. We find state
fidelities Tr

�p
⇢ideal⇢

p
⇢ideal

�
of 99.5±0.4 %, 96.0±0.5 %,

86.3 ± 0.5 % and 81.7 ± 0.5 % for the N = 2 Bell state and
N = 3, 4, 5 GHZ states. A GHZ state fidelity over 50 % satis-
fies the criterion for genuine entanglement26. It is interesting
to note that the ratio of the off-diagonal to diagonal ampli-
tudes |⇢|0i⌦N ,|1i⌦N |2/⇢|0i⌦N ,|0i⌦N⇢|1i⌦N ,|1i⌦N have the val-
ues 0.99, 0.98, 0.99 and 0.99, suggesting that dephasing is
small and/or uncorrelated. The five-qubit GHZ state is the
largest multi-qubit entanglement demonstrated to date in the
solid state8,9, with state fidelity similar to results obtained in
ion traps27. This demonstrates that complex quantum states
can be constructed with high fidelity in a modular fashion,
highlighting the potential for more intricate algorithms on this
multi-purpose quantum processor.

We have shown single and two-qubit gates with fidelities

Single-qubit gates C-Phase gate 

Barends 2014 

Average single-qubit gate fidelity: 
99.92% 

Average C-Phase gate fidelity: 
99.4% 
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where!rm ! !r "!m is the detuning of the measurement
drive from the resonator frequency. The cavity pulls !1 ¼
"1 MHz and !2 ¼ "1:5 MHz are determined by the
detuning !1;2, the coupling strength g1;2, and the design
parameters of the qubit [29]. The last term in Eq. (1)
models the measurement drive with amplitude "ðtÞ.

The operator !̂ ! !1#̂z1 þ !2#̂z2, which describes the
dispersive shift of the resonator frequency, is linear in both
qubit states. It does not contain two-qubit terms like #̂z1#̂z2

from which information about the qubit-qubit correlations
could be obtained. However, in circuit QED, instead of
measuring frequency shifts directly, we record quadrature
amplitudes of microwave transmission through the resona-
tor which depend nonlinearly on these shifts. The average
values of the field quadratures hÎðtÞi ¼ ½$̂ðtÞðây þ âÞ( and
hQ̂ðtÞi ¼ iTr½$̂ðtÞðây " âÞ( are determined from the am-
plified voltage signal at the resonator output in a homodyne
measurement, where $̂ðtÞ denotes the state of both qubits
and resonator field.

These expressions can be evaluated by assuming an
initially separable state $̂ð0Þ ¼ j0ih0j ) $̂qð0Þ for the qu-

bits [$̂qð0Þ] and the resonator [j0ih0j]. Taking $̂qð0Þ ¼P
#;#0p##0ð0Þj#ih#0j, with # ¼ fee; eg; ge; ggg, the com-

bined qubits-resonator state at time t under Eq. (1) and
cavity damping can be expressed as $̂ðtÞ ¼P

#;#0p##0ðtÞj#%#ih#0%#0 j [33]. In this expression, %# is
the coherent state amplitude given that the qubits are in
state j#i and satisfies _%# ¼ "ið!rm þ h#j!̂j#iÞ%# "
i"" &%#=2. Since this is a quantum nondemolition mea-

surement [27], p##ðtÞ ¼ p##ð0Þ, and the off-diagonal
terms p##0ðtÞ contain an ac-Stark shift and dephasing,
both induced by the measurement.
Taking the trace on the resonator space yields

hÎðtÞi; hQ̂ðtÞi ¼ Trq½$̂qð0ÞM̂I;QðtÞ(, where M̂I;QðtÞ ¼P
#h%#ðtÞjÎ; Q̂j%#ðtÞij#ih#j and Trq denotes the partial

trace over the qubits. In the steady state we find

M̂ I ¼ ""
2ð!rm þ !̂Þ

ð!rm þ !̂Þ2 þ ð&=2Þ2 ; (2)

M̂ Q ¼ ""
&

ð!rm þ !̂Þ2 þ ð&=2Þ2 ; (3)

demonstrating that the measurement operators are non-
linear functions of !̂. Thus, M̂I;Q comprises in general
also two-qubit correlation terms proportional to #̂z1#̂z2,
which allow one to reconstruct the full two-qubit state.
In our experiments the phase of the measurement mi-

crowave at frequency !rm ¼ ð!1 þ !2Þ is adjusted such
that theQ quadrature of the transmitted signal carries most
of the signal when both qubits are in the ground state. The
corresponding measurement operator can be expressed as

M̂ ¼ 1
4ð'00îdþ '10#̂z1 þ '01#̂z2 þ '11#̂z1#̂z2Þ; (4)

with 'ij ¼ %"" þ ð"1Þj%"þ þ ð"1Þi%þ" þ
ð"1Þiþj%þþ and

%** ¼ "&fð&=2Þ2 þ ð!rm * !1 * !2Þ2g"1=2 (5)

representing the qubit state dependent Q-quadrature am-
plitudes of the resonator field in the steady-state limit and
for an infinite qubit lifetime [Fig. 2(a)].
Since we operate in a regime where the qubit relaxation

cannot be neglected, the steady-state expression is of lim-
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FIG. 2 (color online). (a) Q quadrature of the resonator field
for the qubits in states gg, eg, ge, and ee as a function of the
detuning !rm. Tomography measurements have been performed
at !rm ¼ ð!1 þ !2Þ indicated by an arrow. (b) Measured (data
points) time evolution of the Q quadrature for the indicated
initial states compared to numerically calculated responses (solid
lines). All parameters have been determined in independent
measurements.
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FIG. 1. Schematic of the experimental setup with two qubits
coupled via the capacitances Cg to a microwave resonator
operated at a temperature of about 20 mK. The transition
frequencies of the qubits are adjusted by external fluxes "1

and "2. The resonator-qubit system is probed through the input
and output capacitances Cin and Cout, respectively, by a micro-
wave signal at frequency !m. Additionally, local control of the
qubits is implemented by capacitively coupled signals !d1 and
!d2, which are phase and amplitude modulated using in-phase/
quadrature (I/Q) mixers. The output signal is detected in a
homodyne measurement at room temperature.
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levels, producing a frequency shift f/2p of the lower branch with
respect to the sum fL 1 fR, in good agreement with a numerical dia-
gonalization of the generalized Tavis–Cummings Hamiltonian28 (see
Methods).

This shift is the mechanism of our conditional phase gate. Flux
pulses, adiabatic with respect to the j1, 1æ « j0, 2æ avoided crossing,
produce phase gates

U~

1 0 0 0

0 eiw01 0 0

0 0 eiw10 0

0 0 0 eiw11

0

BBB@

1

CCCA

in the computational Hilbert space. Here, wlr 5 2p#dflr(t)dt is the
dynamical phase acquired by jl, ræ, and dflr is the deviation of flr from
its value at point I. A VR pulse into point II such that
#f(t)dt 5 (2n 1 1)p with integer n implements a C-Phase gate,
because w11 5 w01 1 w10 2 #f(t)dt. This method of realizing a
C-Phase gate by adiabatically using the avoided crossing between
computational and non-computational states is generally applicable
to qubit implementations with finite anharmonicity, such as trans-
mons12 or phase qubits13. A similar approach involving higher excita-
tion levels but with non-adiabatic pulses was previously proposed29.
The negative anharmonicity permits the phase gate at point II to
occur before the onset of transverse coupling at point III.

Control of f by two orders of magnitude provides an excellent on-
off ratio for the C-Phase gate. Measurements of f obtained from
spectroscopy and from time-domain experiments show very good
agreement (Fig. 2c). The time-domain method measures the differ-
ence in the precession frequency of QL in two Ramsey-style experi-
ments, where a VR-pulse of varying duration (0–100 ns) is inserted
between p/2 rotations of QL, with QR either in the ground state j0æ or
excited into state j1æ. Using the time-domain approach, we measure a
residual f/2p< 1.2 MHz at point I (star in Fig. 2c). The theoretical f
obtained by numerical diagonalization shows reasonable agreement
with the data, except for a scale factor that is probably due to higher
modes of the cavity25, not included in the calculation.

The controlled phase interaction allows universal two-qubit gates.
As an example, we produce entangled states on demand (Fig. 3). The
pulse sequence in Fig. 3a generates any of the four Bell states,

Y+
!! "

~ 1ffiffi
2
p 0, 0j i+ 1, 1j ið Þ W+

!! "
~ 1ffiffi

2
p 0, 1j i+ 1, 0j ið Þ

depending on the choice of C-Phase gate cUij applied

(cUij l, rj i~ {1ð Þdil djr l, rj i, where d is Kronecker’s delta). We achieve
#f(t)dt 5p by tuning the amplitude of a 30 ns VR-pulse close to point
II and back. During the pulse, QR acquires a large dynamical phase
w01 < 260p. The four cUij gates differ by whether w01 and w10 are
even or odd multiples of p. We tune w01 over a 2p range by adjusting
the rising and falling edges of the pulse, and w10 by varying the
amplitude of a simultaneous weak VL-pulse (Supplementary Fig. 3).
The conditional phase #f(t)dt is largely independent of these two
adjustments.

To detect the entanglement, we reconstruct the two-qubit density
matrix r by quantum state tomography using joint dispersive read-
out9,22,24. A pulsed measurement of the homodyne voltage VH mea-
sures the operator:

M~b1sL
z zb2sR

z zb12sL
z6sR

z

Operation in the strong-dispersive regime23,24 makes the three con-
stant coefficients have approximately the same magnitude,
jb12j< jb1j, jb2j, enhancing sensitivity to two-qubit correlations. A
complete set of 15 linearly independent operators is built using sin-
gle-qubit rotations before measuring M. An ensemble average of each
operator is obtained by executing the sequence in Fig. 3a 450,000
times. The 15 average values are then input to a maximum-likelihood
estimator of r (Supplementary Information).

The inferred density matrices rml reveal in all four cases (Fig. 3b–e)
a high degree of two-qubit entanglement, which we quantify using
concurrence30, C. Values are listed in Fig. 3 legend, along with the
metrics of purity P(r) 5 Tr(r2) and fidelity to the target state jyæ,
F(r, y) 5 Æyjrjyæ. Note that there are several common definitions of
fidelity in the literature, and our definition is the square of the fidelity
used in refs 18 and 24. The quoted values significantly extend the state
of the art for solid-state entanglement18, and provide evidence that we
have a high-fidelity universal set of two-qubit gates.

One- and two-qubit gates can be concatenated to realize simple
algorithms, such as Grover’s quantum search1,2 shown in Fig. 4.
Given a function f(x) on the two-bit set x[ 00, 01, 10, 11f g such that
f(x) 5 0 except at some x0, where f(x0) 5 1, this well-known algo-
rithm can determine x0 with a single call of an oracle O that encodes

Figure 1 | Two-qubit cQED device, and cavity/qubit characterization.
a, Optical micrograph of four-port device with a coplanar waveguide cavity
bus coupling transmon qubits QL and QR (coloured red and blue in insets),
and local flux-bias lines providing fast qubit tuning. Microwave pulses at the
qubit transition frequencies fL and fR drive single-qubit rotations, and a
pulsed measurement of the cavity homodyne voltage VH (at frequency fC)
provides two-qubit readout. The flux-bias lines (bottom-left and top-right
ports) are coplanar waveguides with short-circuit termination next to their
target qubit. The termination geometry allows currents (IL and IR) on the
lines to couple flux through the split junctions (b, inset). b, Grey-scale

images of cavity transmission and of qubit spectroscopy as a function of VR,
showing local tuning of QR across the avoided crossing with QL (point III)
and across the vacuum Rabi splitting with the cavity (point IV). Semi-
transparent lines are theoretical best fits obtained from numerical
diagonalization of a generalized Tavis–Cummings Hamiltonian28. Points I
and II are the operating points of the processor. Preparation, single-qubit
operations and measurements are performed at point I, and a C-Phase gate is
achieved by pulsing into point II. Numerals indicate excitation level of QL

(red) and QR (blue) in the spectroscopy at point I.
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Reminder: Single-Qubit Readout 
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Shift of cavity frequency depending on qubit state 

Hamiltonian of the system 
in dispersive limit 

!  State-dependent pull of cavity 
frequency by the qubit 

!  Apply measurement pulse to 
resonator 
!  If we measure at omega_r +- shift, qubit 

state can be extracted from number of 
transmitted photons 

!  If we measure at omega_r (bare 
resonator freq.), state encoded in phase 
of transmitted pulse (-> single-shot 
readout possible) 

QSIT lecture slides 2014,   Blais 2004 A. Blais et al., PRA 69, 062320 (2004) 
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!  Each qubit induces a state-
dependent dispersive shift 
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Joint Dispersive Readout of Qubits 

where!rm ! !r "!m is the detuning of the measurement
drive from the resonator frequency. The cavity pulls !1 ¼
"1 MHz and !2 ¼ "1:5 MHz are determined by the
detuning !1;2, the coupling strength g1;2, and the design
parameters of the qubit [29]. The last term in Eq. (1)
models the measurement drive with amplitude "ðtÞ.

The operator !̂ ! !1#̂z1 þ !2#̂z2, which describes the
dispersive shift of the resonator frequency, is linear in both
qubit states. It does not contain two-qubit terms like #̂z1#̂z2

from which information about the qubit-qubit correlations
could be obtained. However, in circuit QED, instead of
measuring frequency shifts directly, we record quadrature
amplitudes of microwave transmission through the resona-
tor which depend nonlinearly on these shifts. The average
values of the field quadratures hÎðtÞi ¼ ½$̂ðtÞðây þ âÞ( and
hQ̂ðtÞi ¼ iTr½$̂ðtÞðây " âÞ( are determined from the am-
plified voltage signal at the resonator output in a homodyne
measurement, where $̂ðtÞ denotes the state of both qubits
and resonator field.

These expressions can be evaluated by assuming an
initially separable state $̂ð0Þ ¼ j0ih0j ) $̂qð0Þ for the qu-

bits [$̂qð0Þ] and the resonator [j0ih0j]. Taking $̂qð0Þ ¼P
#;#0p##0ð0Þj#ih#0j, with # ¼ fee; eg; ge; ggg, the com-

bined qubits-resonator state at time t under Eq. (1) and
cavity damping can be expressed as $̂ðtÞ ¼P

#;#0p##0ðtÞj#%#ih#0%#0 j [33]. In this expression, %# is
the coherent state amplitude given that the qubits are in
state j#i and satisfies _%# ¼ "ið!rm þ h#j!̂j#iÞ%# "
i"" &%#=2. Since this is a quantum nondemolition mea-

surement [27], p##ðtÞ ¼ p##ð0Þ, and the off-diagonal
terms p##0ðtÞ contain an ac-Stark shift and dephasing,
both induced by the measurement.
Taking the trace on the resonator space yields

hÎðtÞi; hQ̂ðtÞi ¼ Trq½$̂qð0ÞM̂I;QðtÞ(, where M̂I;QðtÞ ¼P
#h%#ðtÞjÎ; Q̂j%#ðtÞij#ih#j and Trq denotes the partial

trace over the qubits. In the steady state we find

M̂ I ¼ ""
2ð!rm þ !̂Þ

ð!rm þ !̂Þ2 þ ð&=2Þ2 ; (2)

M̂ Q ¼ ""
&

ð!rm þ !̂Þ2 þ ð&=2Þ2 ; (3)

demonstrating that the measurement operators are non-
linear functions of !̂. Thus, M̂I;Q comprises in general
also two-qubit correlation terms proportional to #̂z1#̂z2,
which allow one to reconstruct the full two-qubit state.
In our experiments the phase of the measurement mi-

crowave at frequency !rm ¼ ð!1 þ !2Þ is adjusted such
that theQ quadrature of the transmitted signal carries most
of the signal when both qubits are in the ground state. The
corresponding measurement operator can be expressed as

M̂ ¼ 1
4ð'00îdþ '10#̂z1 þ '01#̂z2 þ '11#̂z1#̂z2Þ; (4)

with 'ij ¼ %"" þ ð"1Þj%"þ þ ð"1Þi%þ" þ
ð"1Þiþj%þþ and

%** ¼ "&fð&=2Þ2 þ ð!rm * !1 * !2Þ2g"1=2 (5)

representing the qubit state dependent Q-quadrature am-
plitudes of the resonator field in the steady-state limit and
for an infinite qubit lifetime [Fig. 2(a)].
Since we operate in a regime where the qubit relaxation

cannot be neglected, the steady-state expression is of lim-
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FIG. 2 (color online). (a) Q quadrature of the resonator field
for the qubits in states gg, eg, ge, and ee as a function of the
detuning !rm. Tomography measurements have been performed
at !rm ¼ ð!1 þ !2Þ indicated by an arrow. (b) Measured (data
points) time evolution of the Q quadrature for the indicated
initial states compared to numerically calculated responses (solid
lines). All parameters have been determined in independent
measurements.
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FIG. 1. Schematic of the experimental setup with two qubits
coupled via the capacitances Cg to a microwave resonator
operated at a temperature of about 20 mK. The transition
frequencies of the qubits are adjusted by external fluxes "1

and "2. The resonator-qubit system is probed through the input
and output capacitances Cin and Cout, respectively, by a micro-
wave signal at frequency !m. Additionally, local control of the
qubits is implemented by capacitively coupled signals !d1 and
!d2, which are phase and amplitude modulated using in-phase/
quadrature (I/Q) mixers. The output signal is detected in a
homodyne measurement at room temperature.
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