

EXPERIMENT

RABI OSCILLATIONS

With initial state $|g,n\rangle$, n=1 to 6. 0.8 0.6 $^{0.6}_{\mu}$ 0.2 (b) (a) 0.0 $\pi_g^{|g,n\rangle}(t) = \pi_0 + \frac{c}{2} e^{-t/\tau_{n-1}} \cos(\Omega_{n-1}t).$ 1.0 0.8 $\pi_g(t)$ 0.6 0.4 0.2 (d) (C 0.0 1.0 0.8 $(t)^{0.6}_{\mu}$ 0.6 0.2 0.0 10 15 20 25 10 15 20 25 8 30 Ŭ t [μs] t [μs]

1.0

30

RAMSEY

Ramsey pulse phase $\phi_r = (\omega_r - \omega_{eq})T$ $\pi/2$ pulses in R1 and R2. 1.0 Hamiltonian in dispersive regime: $\hat{\mathrm{H}}_{\mathrm{JC}} \simeq \frac{\hbar g^2}{\Delta \omega} \hat{\mathrm{a}}_{\mathrm{c}}^{\dagger} \hat{\mathrm{a}}_{\mathrm{c}} (\hat{\sigma}_{\mathrm{ee}} - \hat{\sigma}_{\mathrm{gg}}).$ 0.8 $\pi_{\theta}(\phi_{r},0)$ 0.6 0.4 Probability π_e of measuring in state $|e\rangle$ 0.2 $\pi_e(\phi_r, n) = \pi_o + \frac{c}{2} \cos\left(\phi_r + \phi_0(n+1/2)\right)$ 0.0 -2 8 -4 6 Phase ϕ_r (rad)

RAMSEY (2)

With photons in the cavity

Guerlin et al., Nature (2007)

DETECTOR

Field-ionization detector

Absolute efficiency 0.35

CAVITY

Copper mirrors

Niobium layer

0.8K

Tc = 130ms

Finesse of $4x10^9$, highest ever reached in a Fabry-Pérot at any frequency range, Q= 10^{10}

f = 51GHz

Linewidth ~5Hz !

arXiv:quant-ph/0612138

CONTROLLER

Quantum State Tomography: estimates continuously the maximum likelyhood state density matrix with Bayes Law

Takes into account

0,1,2 Rydberg atoms sent through cavity

Finite detection efficiency

Calculates a distance $d(\rho_t, \rho)$ between the target state and estimated one and the field to inject in order to minimize it

NATURE

Coherent field injection.

$$d = 1 - \operatorname{Tr}(\Lambda^{(n_t)}\rho)$$

NATURE (2)

Sub-poissonian distribution

Red: after prop > 0.8 estimated

Blue: after fixed time

NATURE (3)

Time to reach objective

Reaction to a quantum jump

PRL

Dispersive sensors & resonant actuators V controls if the Rydberg atom is resonant with the cavity

$$d = \sum_{n} (n - n_t)^2 p(n)$$

PRL (2)

Example of a experiment aiming at n = 4

PRL (3)

COMPARISON

OUTLOOK

Protection against decoherence

Programmable trajectory in Hilbert space

