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Idea

Alternative approach to quantum computation.

Encode problem in a constructed Hamiltonian.

Encode solution in ground state of this Hamiltonian.
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Spin glass

Figure: Three frustrated spins with ferromagnetic and anti-ferromagnetic
coupling.

Frustrations lead to many local minima.

Minima are separated by large potential walls.

Ground state not reachable by cooling.
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Adiabatic Theorem

Theorem

A physical system remains in its instantaneous eigenstate if a given
perturbation is acting on it slowly enough and if there is a gap
between the eigenvalue and the rest of the Hamiltonian’s spectrum.

A system in the ground state remains in the ground state.

The perturbation does not have to be small.

Can switch Hamiltonian: H(t) = (1− t
T )H0 +

t
THP
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Runtime of an adiabatic algorithm

Figure: Eigenvalues of the time-dependent Hamiltonian. E0 and E1

avoid crossing each other.
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Runtime of an adiabatic algorithm

For probability 1− ε2 of remaining in the ground state:

gmin = min
0≤t≤T

[E1(t)− E0(t)] (1)

Dmax = max
0≤t≤T

|〈E1; t|
dH

dt
|E0; t〉| (2)

Condition for the adiabatic Theorem:

Dmax

g2min

≤ ε (3)
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Exact Cover

String of n bits z1, z2...zn satisfying a set of clauses of the form
zi + zj + zk = 1.
Determining a string satisfying all clauses involves checking all 2n

assignments, and is a NP-complete problem.
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Define energy for a clause:

hC(ziC , zjC , zkC ) =

{
0 if ziC + zjC + zkC = 1

1 if ziC + zjC + zkC 6= 1
(4)

Define total energy:

h =
∑
C

HC (5)

The energy h ≥ 0 and h(z1, z2, ...zn) = 0 only if the string satisfies
all clauses.
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Problem Hamiltonian

Use spin-12 qubits labeled by |z1〉 where z1 = 0, 1.

|0〉 =
(
1
0

)
and |1〉 =

(
0
1

)
(6)

Define operator corresponding to clause C

HP,C(|z1〉...|zn〉) = hC(ziC , zjC , zkC )|z1〉...|zn〉 (7)

Problem Hamiltonian is given by

HP =
∑
C

HP,C (8)
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Initial Hamiltonian

Use x basis for initial state

|xi = 0〉 = 1√
2

(
1
1

)
and |xi = 1〉 = 1√

2

(
1
−1

)
(9)

Define operator

H
(i)
B |xi = x〉 = 1

2
(1− σ(i)x )|xi = x〉 = x|xi = x〉 (10)
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Initial Hamiltonian is given by

HP =

n∑
i=1

diH
(i)
B (11)

where di is the number of clauses involving bit i.
The ground state is given by

|x1 = 0〉...|xn = 0〉 = 1

2n/2
(|z1 = 0〉+|z1 = 1〉)...(|zn = 0〉+|zn = 1〉)

(12)
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Runtime for probability 1/8

Figure: Median time to achieve success probability of 1/8 for different
sized problems.
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Conclusion

Alternative, non-gate based approach to quantum
computation.

Encode solution in ground state of a Hamiltonian.

Adiabatic theorem provides way to reach the ground state.
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