

Ritter et al., Nature 484, 195 (2012)

Trapped Ions/Atoms: Quantum Networks

Christian Vázquez, David Nadlinger

Quantum Systems for Information Technology, Spring Term 2014

Christian Vázquez, David Nadlinger | 09. 05. 2014 | 1

This Talk

- Quantum Networks: Why? How?
- Two Entanglement Generation Experiments: Moehring et al., "Entanglement of single-atom quantum bits at a distance", *Nature* 449, 68 (2007)

Ritter et al., "An elementary quantum network of single atoms in optical cavities", *Nature* 484, 195 (2012)

Results/Comparison

Perspectives

Why Quantum Networks?

Large number of ions in one trap is not feasible:

- ID string -> requirements on trap potential
- Heating rate increases linearly
- Mechanical mode density increases

State of the art: ~15 qubits

- Entanglement of 14 ions Monz et al., Phys. Rev. Lett. 106, 130506 (2011)
- Simulations using long chains (~20 ions)

C. Monroe and J. Kim,

Science 339, 1164 (2013)

Why Quantum Networks?

k systems of *n* qubits:

- With classical links: $d = k2^n$ (dim. of state space) With quantum links: $d = 2^{nk}$
- Multiple qubit entanglement
 -> State transfer, information sharing

Requirements for Quantum Networks

We infer the following requirements.

For Nodes:

Receiving, storing, releasing quantum information

For Channels:

Faithfully transmit quantum state between nodes

THzürich

Linking Ion Traps

Nature 417, 709 (2002)

Photons

Entangling Atoms using Photons

Heralded entanglement gen. using beamsplitter: Moehring et al. (2007)

Quantum Systems for Information Technology, Spring Term 2014

Cavity QED:

Ritter et al. (2012)

Entangling Atoms using Photons

Heralded entanglement gen. using beamsplitter: Moehring et al. (2007)

Cavity QED: Ritter et al. (2012)

Moehring (2007): Exp. Setup

50/50 (non-polarizing) beam splitter:

Consider input state $\frac{1}{2} \begin{bmatrix} \langle |\uparrow\rangle_{a} |\nu_{\uparrow}\rangle_{a} - |\downarrow\rangle_{a} |\nu_{\downarrow}\rangle_{a} \rangle \otimes (|\uparrow\rangle_{b} |\nu_{\uparrow}\rangle_{b} - |\downarrow\rangle_{b} |\nu_{\downarrow}\rangle_{b}) \end{bmatrix} = \frac{1}{2} \begin{bmatrix} \langle |\phi^{+}\rangle_{atom} |\phi^{+}\rangle_{photon} + \langle |\phi^{-}\rangle_{atom} |\phi^{-}\rangle_{photon} - \langle |\Psi^{+}\rangle_{atom} |\Psi^{+}\rangle_{photon} - \langle |\Psi^{-}\rangle_{atom} |\Psi^{-}\rangle_{photon} - \langle |\Psi^{-}\rangle_{photon} - \langle |\Psi^{-}\rangle_{photon} |\Psi^{-}\rangle_{photon} - \langle |\Psi^{$

Entangling Atoms using Photons

Heralded entanglement gen. using beamsplitter: Moehring et al. (2007)

Quantum Systems for Information Technology, Spring Term 2014

Christian Vázquez, David Nadlinger | 09. 05. 2014 | 12

State Transfer, Entangl. Creation

Ideal state transfer follows from adequate Raman pulses: photonic wave packet determined by $\Omega_i(t)$

$$\begin{split} (c_{g}|g\rangle_{1} + c_{e}|e\rangle_{1}) |g\rangle_{2} \otimes |0\rangle_{1}|0\rangle_{2} |\text{vac}\rangle \\ & \longrightarrow |g\rangle_{1}(c_{g}|g\rangle_{2} + c_{e}|e\rangle_{2}) \otimes |0\rangle_{1}|0\rangle_{2} |\text{vac}\rangle \end{split}$$

Cirac, Zøller, Kimble, Mabuchi, Phys. Rev. Lett. 78, 3221 (1997)

$$\left|\psi_{\mathrm{A}\otimes\mathrm{B}}^{-}\right\rangle = \frac{1}{\sqrt{2}}\left(\left|1,-1\right\rangle\otimes\left|2,1\right\rangle-\left|1,1\right\rangle\otimes\left|2,-1\right\rangle\right)$$

State Tomography

- Moehring (2007): Only correlations in unrotated basis
- Ritter (2012): Full state tomography

Local rotations: fidelity oscillates

- Moehring (2007): Microwave pulses, different phase
- Ritter (2012): Extra B field applied for 12.5 µs

THzürich

Comparison

Moehring (2008)		Ritter (2012)
Excitation to upper state with short pulse	Photon creation	Stimulated Raman process (STIRAP)
Interference at 50/50 beam splitter	Photon use	Raman process at target atom
F = 65 ± 3%	Fidelity to target state	F = 85 ± 1.3 %
p = 3.6 · 10 ⁻⁹	Success probability of entanglement scheme	p = 0.02
R = 0.118 min ⁻¹	Rate of entanglement creation	R = 1800 min⁻¹
Coincidence detection	Entanglement heralding	None

Perspectives

Review:

ELU

ELU

EU

- Entanglement by single photon detection Slodička et al., PRL 110, 083603 (2013)
- Atom/photon quantum gates
 Reiserer et al., *Nature* 508, 237 (2014)
 Tiecke et al., *Nature* 508, 241 (2014)

N x N optical

crossconnect switch

Conclusion

- To build large-scale quantum systems, we need to create entanglement between distant nodes
- Two approaches for entangling atoms/ions discussed:
 - Heralded entanglement creation using beam splitter (probabilistic)
 - Atom-cavity nodes allowing deterministic interaction with photons