NV Centers in Quantum Information Technology

De-Coherence Protection & Teleportation

Brennan MacDonald-de Neeve, Florian Ott, and Leo Spiegel

The NV Center

- Point Defect in Diamond
- Interesting Physics in negatively charged state NV⁻¹
- Total electron spin S=1
- ¹⁴N Nuclear Spin I=1

Di Vincenzo Criteria

- 1. Well-defined qubits
- 2. Initialization
- 3. $t_{coherence} > t_{gate operation}$
- 4. Universal set of quantum gates
- 5. Qubit specific read-out
- 6. Convert from stationary to mobile qubit
- 7. Faithful transmission

Relevant Ground State Energy Structure

Relevant Ground State Energy Structure

Relevant Ground State Energy Structure

Spin Initialization from Excited State

 Electron Spin using LASER pumping

Spin Initialization from Excited State

 Electron Spin using LASER pumping

Nuclear Spin using LASER pumping at B = 500 G

N. B. Manson et al. Phys. Rev. B 47, 104303 (2006).

V. Jacques et al. Phys. Rev. Lett. 102, 057403 (2011).

Read-Out

PL Spectrum of optically excited NV Center:

- $m_S = 0$ is bright (E_x)
- $m_S = -1$ is dark (A_1)

L. Robledo et al. Nature 477, 574–578 (2011).

Read-Out

PL Spectrum of optically excited NV Center:

- $m_S = 0$ is bright (E_x)
- $m_S = -1$ is dark (A_1)

L. Robledo *et al.* Nature **477**, 574–578 (2011).

Decoherence

Decoherence is caused by all the undesired interactions of a quantum state with its environment which shortens its lifetime.

Decoherence

Decoherence is caused by all the undesired interactions of a quantum state with its environment which shortens its lifetime.

- > Dynamic decoupling: Periodic flipping of the qubit spin state to average out the interactions with the environment.
- L. Viola et al. Phys. Rev A 58, 2733 (1998).

Dynamical Decoupling

A. M. Souza et al. Phil. Trans. R. Soc. 370, 4748-4769 (2012).

Decoherence in multi-qubit gates

1) Qubits couple to each other but also to environment

N. van der Sar et al. Nature **484**, 82–86 (2012).

Decoherence in multi-qubit gates

1) Qubits couple to each other but also to environment

2) Qubits decoupled from each other and environment

Decoherence in multi-qubit gates

1) Qubits couple to each other but also to environment

2) Qubits decoupled from each other and environment

3) Qubits only decoupled from environment

Qubit Coupling

Qubit Coupling

Generally desirable

Fast coupling for fast qubit manipulation

Qubit Coupling

Generally desirable

Fast coupling for fast qubit manipulation

But we pay a price

We also get faster coupling to the environment

Encode Physical Qubits in:

atomic states

- atomic states
- superconducting circuits

- atomic states
- superconducting circuits
- quantum dots

- atomic states
- superconducting circuits
- quantum dots
- NV centers

Difficult Scenario
Using "fast" qubit as the control bit

Difficult Scenario Using "fast" qubit as the control bit

Question

Can we use dynamical decoupling to make a gate using the "fast" qubit as our control bit?

"Fast" qubit: electronic spin

"Fast" qubit: electronic spin

► GHz energy splitting

"Fast" qubit: electronic spin

- GHz energy splitting
- $T_2 = 3.5 \mu s$; Rabi 2π pulse: 20ns

"Fast" qubit: electronic spin

GHz energy splitting

• $T_2 = 3.5 \mu s$; Rabi 2π pulse: 20ns

"Slow" qubit: nuclear spin

"Fast" qubit: electronic spin

- ► GHz energy splitting
- $T_2 = 3.5 \mu s$; Rabi 2π pulse: 20ns

"Slow" qubit: nuclear spin

MHz energy splitting

"Fast" qubit: electronic spin

- GHz energy splitting
- $T_2 = 3.5 \mu s$; Rabi 2π pulse: 20ns

"Slow" qubit: nuclear spin

- MHz energy splitting
- ▶ $T_2 = 5.3 ms$; Rabi 2π pulse: $30\mu s$

Imagine

Imagine

Imagine

Imagine

Imagine

Not obvious whether this can work

Not obvious whether this can work

Electronic SpinNuclear Spin
$$m_S = 0: |0\rangle$$
 $m_I = +1: |\uparrow\rangle$ $m_S = -1: |1\rangle$ $m_I = 0: |\downarrow\rangle$

Electronic Spin

$$m_S = 0: |0\rangle$$

 $m_S = -1: |1\rangle$

Nuclear Spin

$$m_I = +1 : |\uparrow\rangle$$

 $m_I = 0 : |\downarrow\rangle$


```
Electronic Spin Nuclear Spin m_S=0:|0\rangle m_I=+1:|\uparrow\rangle m_I=0:|\downarrow\rangle Timescales ( \mu s ) H_{T_{2,e}}
```


Electronic Spin $m_S = 0 : |0\rangle$ $m_S = -1 : |1\rangle$ Timescales (μs) 3.5 $T_{2,e}$

 $T_{Rabi,n}$

Nuclear Spin

$$m_I = +1: |\uparrow\rangle$$

$$m_I = 0: |\downarrow\rangle$$

Decoupling Pulse Sequence

$$\tau - X - 2\tau - Y - \tau$$

Decoupling Pulse Sequence

$$\tau - X - 2\tau - Y - \tau$$

Electronic Qubit in State $|0\rangle$

$$exp(\frac{-i\sigma_z\theta_0}{\hbar})exp(\frac{-i\sigma_x2\theta_1}{\hbar})exp(\frac{-i\sigma_z\theta_0}{\hbar})$$

Decoupling Pulse Sequence

$$\tau - X - 2\tau - Y - \tau$$

Electronic Qubit in State $|0\rangle$ $\exp(\frac{-i\sigma_z\theta_0}{\hbar})\exp(\frac{-i\sigma_x2\theta_1}{\hbar})\exp(\frac{-i\sigma_z\theta_0}{\hbar})$

Electronic Qubit in State $|1\rangle$

$$exp(\frac{-i\sigma_x\theta_1}{\hbar})exp(\frac{-i\sigma_z2\theta_0}{\hbar})exp(\frac{-i\sigma_x\theta_1}{\hbar})$$

Special case 1 $\tau = (2n+1)\pi/A$

Special case 1 $\tau = (2n+1)\pi/A$

Special case 1 $\tau = (2n+1)\pi/A$

Special case 1 $\tau = (2n+1)\pi/A$

Special case 2 $\tau = 2n\pi/A$

Special case 2

 $\tau = 2n\pi/A$

Special case 2

 $\tau = 2n\pi/A$

Special case 2

 $\tau = 2n\pi/A$

Combine special cases 1 and 2 obtain a conditional rotation gate

CNOT Gate (
$$\theta = \pi$$
) Process fidelity:

$$F_p = Tr(\chi_{ideal}\chi) = 83\%$$

CNOT Gate (
$$\theta = \pi$$
)

Process fidelity:

$$F_p = Tr(\chi_{ideal}\chi) = 83\%$$

For a State

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$

 $\rho = |\psi\rangle \langle \psi|$

CNOT Gate (
$$\theta = \pi$$
)

Process fidelity:

$$F_p = Tr(\chi_{ideal}\chi) = 83\%$$

For a State

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$

$$\rho = |\psi\rangle \langle \psi|$$

For an Operator

$$A = \alpha \mathbb{I} + \beta \sigma_{x} + \gamma \sigma_{y} + \delta \sigma_{z}$$

$$\varepsilon(\rho) = A\rho A^{\dagger} = \sum_{i,j} \chi_{ij} E_{i} \rho E_{j}^{\dagger}$$

Inject noise into the diamond Reduce $T_{2,SE}$ from $251\mu s$ to $50\mu s$

Inject noise into the diamond Reduce $T_{2,SE}$ from $251\mu s$ to $50\mu s$

Reduce RF drive power to nuclear spin

Gate time increases to $120 \mu s$

Inject noise into the diamond Reduce $T_{2,SE}$ from $251\mu s$ to $50\mu s$

Reduce RF drive power to nuclear spin

Gate time increases to $120 \mu s$

Single qubit decoupling apply $(\tau - \pi - \tau)^N$

Inject noise into the diamond Reduce $T_{2,SE}$ from $251\mu s$ to $50\mu s$

Reduce RF drive power to nuclear spin

Gate time increases to $120 \mu s$

Single qubit decoupling apply $(\tau - \pi - \tau)^N$

$$T_{2,N=16} = 234 \mu s$$

Apply CNOT

Input state

$$(|0\rangle + i |1\rangle) \otimes |\uparrow\rangle$$

Desired output state

$$|\psi\rangle = (|0\uparrow\rangle + |1\downarrow\rangle)/\sqrt{2}$$

Apply CNOT

Input state

$$(|0\rangle + i |1\rangle) \otimes |\uparrow\rangle$$

Desired output state

$$|\psi\rangle=(|0\uparrow\rangle+|1\downarrow\rangle)/\sqrt{2}$$

Apply CNOT

Input state

$$(|0\rangle + i |1\rangle) \otimes |\uparrow\rangle$$

Desired output state

$$|\psi\rangle=(|0\uparrow\rangle+|1\downarrow\rangle)/\sqrt{2}$$

State Fidelity

$$N = 16 : F = \sqrt{\langle \psi | \rho | \psi \rangle}$$
 reaches 96%

Recall: Search Algorithm

- ► Find entry in list of N elements
- ▶ Number of oracle calls scales as \sqrt{N}

Recall: Search Algorithm

- ► Find entry in list of N elements
- ▶ Number of oracle calls scales as \sqrt{N}

Final State Fidelity > 90%

► Can construct 2-qubit gate protected from decoherence

- ► Can construct 2-qubit gate protected from decoherence
- Especially useful when control bit is "fast"

- ► Can construct 2-qubit gate protected from decoherence
- Especially useful when control bit is "fast"
- ► Achieved process fidelities above 80%, and state fidelities above 90% using an NV center

- ► Can construct 2-qubit gate protected from decoherence
- Especially useful when control bit is "fast"
- ► Achieved process fidelities above 80%, and state fidelities above 90% using an NV center
- ▶ Ultimate goal: $< 10^{-4}$

Quantum Teleportation

NV - Centers

Framework

- Unconditional teleportation
 - Any state can be transmitted

- Remoteness
 - Sender and reciever are reasonably separated (3m)

Entanglement

- Remote entanglement between NV electrons
 - Local entanglement: Spin rotation / Spin-selective excitation

Electron-Photon

Local entanglement: Quantum interference photon detection
 Photon-Photon

Teleporter Setup

Configuration

- Alice NV-Center:
 Transmission Qubit (1) Nuclear spin
 Messenger Qubit (2) Electron spin
- Bob NV-Center:
 Reciever Qubit (3) Electron spin
- Qubits 2 & 3 entangled in $|\Psi^-\rangle_{23}$

Teleporter Setup

Initialization

- Transmission Qubit initialized in $|1\rangle_1$
 - Projective measurement of Messenger
 - Prior to entanglement
- Source State $|\psi\rangle_1 = \alpha|0\rangle_1 + \beta|1\rangle_1$
 - After entanglement to avoid Dephasing

Teleporter Setup

Final State

Final State in Bell basis:

$$|\psi\rangle_{1} \otimes |\Psi^{-}\rangle_{23} = \frac{1}{2}[|\Phi^{+}\rangle_{12}(\alpha|1\rangle_{3} - \beta|0\rangle_{3})$$
$$+|\Phi^{-}\rangle_{12}(\alpha|1\rangle_{3} + \beta|0\rangle_{3})$$
$$+|\Psi^{+}\rangle_{12}(-\alpha|0\rangle_{3} + \beta|1\rangle_{3})$$
$$+|\Psi^{-}\rangle_{12}(-\alpha|0\rangle_{3} - \beta|1\rangle_{3})]$$

- Interaction between Qubits 1 and 2
 - CNOT followed by $\pi/2$ Y-rotation of Transmitter
- Projective measurements
- Conditional Pauli-rotations

Interaction

- Nuclear rotations controlled by Electron excitation level:
 - Controlled $\pi/2$ Y-rotation (on 1 controlled by 2) π Y-rotation (unconditional on 2) Controlled $\pi/2$ Y-rotation (on 1 controlled by 2)

Effectively: $\pi/2$ Y-rotation (unconditional on 1)

Interaction

Overall state after interaction:

$$R_{y1}(^{\pi}/_{2})U_{CNOT}(|\psi\rangle_{1} \otimes |\Psi^{-}\rangle_{23}) = \frac{1}{2}[|11\rangle_{12}(\alpha|1\rangle_{3} - \beta|0\rangle_{3}) + |01\rangle_{12}(\alpha|1\rangle_{3} + \beta|0\rangle_{3}) + |10\rangle_{12}(\alpha|0\rangle_{3} - \beta|1\rangle_{3}) + |00\rangle_{12}(\alpha|0\rangle_{3} + \beta|1\rangle_{3})]$$

Interaction

Overall state after interaction:

$$R_{y1}(^{\pi}/_{2})U_{CNOT}(|\psi\rangle_{1} \otimes |\Psi^{-}\rangle_{23}) = \frac{1}{2}[|11\rangle_{12}(\sigma_{xz}|\psi\rangle_{3}) + |01\rangle_{12}(\sigma_{x}|\psi\rangle_{3}) + |10\rangle_{12}(\sigma_{z}|\psi\rangle_{3}) + |00\rangle_{12}(\mathbb{1}|\psi\rangle_{3})]$$

Measurement

- Direct measurement on messenger
- Projective measurement on transmitter
 - CNOT on $|0\rangle_2$ electron (on reinitialized messenger, controlled by transmitter) Direct measurement on messenger

Pauli rotations

Depending on measurement:

$$|00\rangle_{12} \mapsto \mathbb{1}$$

$$|10\rangle_{12} \mapsto \sigma_z$$

$$|01\rangle_{12} \mapsto \sigma_x$$

$$|11\rangle_{12} \mapsto \sigma_{xz}$$

Results

 Tomography for Y on Bob's side to confirm alignment of reference frames

• 6 unbiased states transmitted. Fidelity 0.77

Outlook

- Remote Entanglement Mutliple Qubits per node:
 - NV Centers are a good candidate for Quantum networks
- Entanglement fidelity high enough to close detection loophole of Bell Inequality