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Figure 1: Principle of a quantum network. 1

Many body simulations

Bigger state space

1H. J. Kimble, 2008[1]
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Increase the state space

Classical connectivity between 2 nodes consisting of n
qubits.
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Photons for quantum channels

Advantages
Low interaction with environment
Fast carrier

Drawbacks
Single photon ! low coupling at the node

Solutions :

Enhance coupling with a cavity

Ensemble of many atoms as nodes (
p
n enhancement)
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Key characteristics of channel $ node interaction

Figure 2: Di↵erent rates at a node : � = coherent coupling,  =
bandwidth of the input-output channel and � = parasitic losses. We
need � >  � �.3

Single atom in a cavity : � = g = Rabi frequency,  = decay rate of
the cavity mode into the channel and � = atomic decay rate.

3H. J. Kimble, 2008 [1]
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Remote qubit error-correction
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Summary of Experiments

Goal: Demonstrate two functioning quantum network nodes in
independent laboratories.
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The Quantum Network Node

Ritter et al. 2012 [2]
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Linking Nodes

Figure 3: 1. Optical fiber link (60m) 2. Rb atom in dipole trap 3.
High-finesse optical cavity 4. single photon wavepacket 5. control
laser.
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Quantum State Conversion

�� and �+ photons excite
atomic state to m = �1
and m = +1 states,
respectively.

control laser applies
⇡-polarized pulse, sending
the atomic states between
di↵erent Zeeman
Manifolds.

atomic qubit: |m = ±1i
photonic qubit: |� = ±1i
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Experimental results

The authors achieve to construct the basic elements of a
quantum network

1 Initialization of qubits in an arbitrary state

2 State transfer

3 Entanglement distribution (long storage time)

4 Perform local operations to create di↵erent entangled
atomic bipartite states
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Implications of results

Tailorable topology

entanglement distribution

Quantum Communication
network

Quantum Many-body
simulation

Distributed quantum
information processing
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Drawbacks

The author’s realization of a simple quantum 2-node/1-link
network is a proof of principle but has drawbacks that have to
be overcome

1 Improve coupling to increase success probability of
write-readout process

2 Typical ND-measurement in trapped ions require
non-degenerate energy levels

3 logical states are not insensitive to residual magnetic fields
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Conclusions

1 Demonstrated the feasability of the basic elements of a
quantum network

Quantum nodes linked by a quantum channel
State transfer & entanglement distribution
Long lifetime of shared entanglement

2 Doubts on scalability of such network implementation

3 Still far away from a functioning quantum network
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