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What is a quantum network ?
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Figure 1: Principle of a quantum network. !

'H. J. Kimble, 2008[1]
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What is a quantum network ?

Quantum y A
node

Quantum channel

Figure 1: Principle of a quantum network. !

e Many body simulations
e Bigger state space
'H. J. Kimble, 2008][1]
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Increase the state space

o Classical connectivity between 2 nodes consisting of n

qubits.
U1,U2
[uo)1 @ |uo)2 —— Uilug)1 ® Ualug)2
2" —1 2" —1
Z ai|ui>1 X Z Bj\ujh — dimension = 2 - 2"
i=0 =0
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o Quantum connectivity :

U
[uo)1 ® |uo)2 = |uo, uo) — Ulug, uo)
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Photons for quantum channels

o Advantages

o Low interaction with environment
o Fast carrier

o Drawbacks
e Single photon — low coupling at the node
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Interest

Photons for quantum channels

o Advantages

o Low interaction with environment
o Fast carrier

o Drawbacks
e Single photon — low coupling at the node
Solutions :
o Enhance coupling with a cavity

e Ensemble of many atoms as nodes (y/n enhancement)
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Key characteristics of channel <+ node interaction

Figure 2: Different rates at a node : x = coherent coupling, xk =
bandwidth of the input-output channel and v = parasitic losses. We
need xy > k> 7.3

3H. J. Kimble, 2008 [1]
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Key characteristics of channel <+ node interaction

Figure 2: Different rates at a node : x = coherent coupling, xk =
bandwidth of the input-output channel and v = parasitic losses. We
need xy > k> 7.3

Single atom in a cavity : x = g = Rabi frequency, x = decay rate of
the cavity mode into the channel and v = atomic decay rate.

3H. J. Kimble, 2008 [1]
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Remote qubit error-correction
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Remote qubit error-correction
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Remote qubit error-correction
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Remote qubit error-correction
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Remote qubit error-correction

a[0)+5[1)® 1100y + [11) 2% 2 (]000) + [011)) + 2 (|110) + [101))
If qubit 2 is 0 : «|0103) + B|1113) — ok
If qubit 2is 1 : a|0115) + B|1103) ~2 «[0105) + B|1113) — ok
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Remote qubit error-correction

al0) + (1)
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with qubit 3 & 4 remote.
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Experimental Setup

Summary of Experiments

Goal: Demonstrate two functioning quantum network nodes in
independent laboratories. J

)

Node A Node B

| t;"r’u tom > — | Yphoton >4> | 'U’v'u tom >
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Experimental Setup

The Quantum Network Node

Ritter et al. 2012 [2]
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Experimental Setup

Linking Nodes

) ® ® AL
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Node A Node B

Figure 3: 1. Optical fiber link (60m) 2. Rb atom in dipole trap 3.
High-finesse optical cavity 4. single photon wavepacket 5. control
laser.
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Experimental Setup

Quantum State Conversion

e 0 and photons excite Readout
atomic state to m = —1 <
and m = +1 states, )
respectively.

@ control laser applies

m-polarized pulse, sending

the atomic states between |O>-§- - |1>
different Zeeman —_—
Manifolds.

e atomic qubit: |m = +£1)

e photonic qubit: |o = £1)
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Results and conclusions

Experimental results

The authors achieve to construct the basic elements of a
quantum network J

@ Initialization of qubits in an arbitrary state
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Results and conclusions

Experimental results

The authors achieve to construct the basic elements of a
quantum network

@ Initialization of qubits in an arbitrary state
© State transfer
@ Entanglement distribution (long storage time)

@ Perform local operations to create different entangled
atomic bipartite states
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Results and conclusions

Implications of results

o Tailorable topology
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Results and conclusions

Implications of results

o Tailorable topology e Quantum Communication
e entanglement distribution network
e Quantum Many-body
simulation

o Distributed quantum
information processing
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Results and conclusions

Drawbacks

The author’s realization of a simple quantum 2-node/1-link
network is a proof of principle but has drawbacks that have to
be overcome

@ Improve coupling to increase success probability of
write-readout process
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Results and conclusions

Drawbacks

The author’s realization of a simple quantum 2-node/1-link
network is a proof of principle but has drawbacks that have to
be overcome

@ Improve coupling to increase success probability of
write-readout process

@ Typical ND-measurement in trapped ions require
non-degenerate energy levels

@ logical states are not insensitive to residual magnetic fields
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Results and conclusions

Conclusions

© Demonstrated the feasability of the basic elements of a
quantum network
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Results and conclusions

Conclusions

© Demonstrated the feasability of the basic elements of a
quantum network

o Quantum nodes linked by a quantum channel
o State transfer & entanglement distribution
e Long lifetime of shared entanglement

@ Doubts on scalability of such network implementation

@ Still far away from a functioning quantum network
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Results and conclusions
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