
Shor’s Algorithm

Elisa Bäumer, Jan-Grimo Sobez, Stefan Tessarini

May 15, 2015

Integer factorization

. n = p · q (where p, q are prime numbers) is a cryptographic one-way

function

. Classical algorithm with best asymptotic behavior: General Number Field

Sieve with superpolynomial scaling: O
(

exp
[
c (lnn)

1
3(ln lnn)

2
3

])
. Basis for commercially important cryptography

Shor’s algorithm

. Factorization algorithm with polynomial complexity

. Runs only partially on quantum computer with complexity

O
(
(log n)2(log log n)(log log log n)

)
. Pre- and post-processing on a classical computer

. Makes use of reduction of factorization problem to order-finding problem

. Achieves polynomial time with efficiency of Quantum Fourier Transform

Talk outline

1. Classical computer part

Sketch of various subroutines

Reduction to period-finding problem

Full classical algorithm

2. Period-finding on quantum computer

Quantum Fourier Transform

Period-finding algorithm

3. Example: Factoring 21

4. Summary

Sketch of various subroutines

. greatest common divisor: e.g. Euclidean algorithm

gcd(a, b) =

{
b if a mod b = 0

gcd(b, a mod b) else
with a > b, quadratic in number of digits of a, b.

reminder: gcd(a, b) = 1→ a, b coprime

. Test of primality: e.g. Agrawal-Kayal-Saxena 2002, polynomial

. Prime power test: determine if n = pα, e.g. Bernstein 1997 in O(log n)

. continued fraction expansion: required to approximate a rational number

by an integer fraction, e.g. Hardy and Wright 1979, polynomial

Reduction to period-finding problem, Miller 1976

. Find factor of odd n provided some method to calculate the order r of xa mod n,
a ∈ N:

1. Choose a random x < n.

2. Find order r (somehow) in xr ≡ 1 mod n.

3. Compute p, q = gcd(x
r
2 ± 1, n) if r even.

. Since (x
r
2 − 1)(x

r
2 + 1) = xr − 1 ≡ 0 mod n.

. Fails if r odd or x
r
2 ≡ −1 mod n.

. Yields a factor with p = 1 − 2−k+1 where k is the number of distinct odd prime
factors of n.

Shor’s algorithm

1. Determine if n is even, prime or a prime power. If so, exit.

2. Pick a random integer x < n and calculate gcd(x, n). If this is not 1, then we
have obtained a factor of n.

3. Quantum algorithm

Pick q as the smallest power of 2 with n2 ≤ q < 2n2.

Find period r of xa mod n.

Measurement gives us a variable c which has the property c
q ≈

d
r where d ∈ N.

4. Determine d, r via continued fraction expansion algorithm.
d, r only determined if gcd(d, r) = 1 (reduced fraction).

5. If r is odd, go back to 2. If x
r
2 ≡ −1 mod n go back to 2.

Otherwise the factors p, q = gcd(x
r
2 ± 1, n).

Quantum Fourier Transform (QFT)

. Define the QFT with respect to an ONB {|x〉} = {|0〉 , ..., |q − 1〉}

QFT : |x〉 7→ 1
√
q

q−1∑
y=0

exp

{
2πi

q
x · y

}
|y〉 =

1
√
q

q−1∑
y=0

ωx·y |y〉

. Apply QFT to a general state |ψ〉 =
∑

x αx |x〉:

QFT (|ψ〉) =
1
√
q

q−1∑
y=0

βy |y〉 ,

where the βy’s are the discrete Fourier transform of the amplitudes αx.

. The QFT is unitary, i.e.

QFT †QFT |x〉 = |x〉

Quantum Fourier Transform (QFT)

. Implement QFT on n qubits

. With the matrix

R =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 e2πi/N



Period Finding Algorithm

. Given a periodic function f : {0, ..., q − 1} → {0, ..., q − 1}, where q = 2l, the periodicity conditions
are

f(a) = f(a+ r) r 6= 0

f(a) 6= f(a+ s) ∀s < r.

. Initialize the q.c. with the state |ΦI〉 = |0〉⊗2l

. Then apply Hadamard gates on the first l qubits and the identity to the others:

|Φ0〉 = H⊗l ⊗ 1⊗l |0〉⊗2l =

(
1√
2

(|0〉+ |1〉)
)⊗l
⊗ |0〉⊗l =

1
√
q

q−1∑
a=0

|a〉 |0〉⊗l

. Apply the unitary that implements the function f (here it is f = xa mod n)

|Φ1〉 = Uf |Φ0〉 =
1
√
q

q−1∑
a=0

|a〉 |f(a)〉

Period Finding Algorithm

. Imagine one performs a measurement on f(a), then the post measurement state of
the first l qubits is

|Φ1〉z =

√
r

q

∑
a:f(a)=z

|a〉 .

. Remember that f is periodic and choose a0 = min {a|f(a) = z}. Now one can
rewrite

|Φ1〉z =

√
r

q

q/r−1∑
t=0

|a0 + t · r〉

when assuming that r|q (i.e. r divides q).

Period Finding Algorithm

. Perform the QFT∣∣∣Φ̃〉
z

= QFT−1(|Φ1〉z) =

√
r

q

q/r−1∑
t=0

1
√
q

q−1∑
c=0

exp

{
−2πi

q
(a0 + rt)c

}
|c〉

=

√
r

q2

q−1∑
c=0

exp

{
−2πi

q
a0c

} q/r−1∑
t=0

exp

{
−2πi

q
trc

}
︸ ︷︷ ︸

αc

|c〉 .

. Remark: if rc = kq for some k ∈ N then

αc =
q

r
.

. The probability for measuring a specific c′ = kq/r:

P [c′] =
∣∣∣〈c′ ∣∣∣Φ̃〉∣∣∣2 =

r

q2
|αc′|2 =

r

q2
q2

r2
=

1

r

Period Finding Algorithm

. Overall probability to measure a c of the form kq
r is then∑

c=kq/r

∣∣〈c′ ∣∣Φ̃〉∣∣2 = r
1

r
= 1

. The algorithm output is a natural number that is of the form kq
r , with

k ∈ N.

Example: Factoring n=21

1. Choose x

2. Determine q

3. Initialize first register (r1)

4. Initialize second register (r2)

5. QFT on first register

6. Measurement

7. Continued Fraction Expansion → determine r

8. Check r → determine factors

1. Choose a random integer x, 1 < x < n

. if it is not coprime with n, e.g. x = 6:

→ gcd(x, n) = gcd(6, 21) = 3 → 21/3 = 7 → done!

. if it is coprime with n, e.g. x = 11:

→ gcd(11, 21) = 1 → continue!

2. Determine q

. n2 = 244
!
≤ q = 2l < 2n2 = 882

→ q = 512 = 29

. Initial state consisting of two registers of length l:

|Φi〉 = |0〉r1 |0〉r2 = |0〉⊗2l

3. Initialize r1

. initialize first register with superposition of all states a(mod q):

|Φ0〉 =
1√
512

511∑
a=0

|a〉 |0〉

. this corresponds to 1√
2
(|0〉 + |1〉) on all bits

4. Initialize r2

. initialize second register with superposition of all states xa(mod n):

|Φ1〉 =
1√
512

511∑
a=0

|a〉 |11a(mod 21)〉

=
1√
512

(|0〉 |1〉 + |1〉 |11〉 + |2〉 |16〉 + |3〉 |8〉 + ...)

a 0 1 2 3 4 5 6 7 8 9 10 ...

11a(mod21) 1 11 16 8 4 2 1 11 16 8 4 ...

. r = 6, but not yet observable

5. Quantum Fourier Transform

. apply the QFT on the first register:

|Φ̃〉 =
1

512

511∑
a=0

511∑
c=0

e2πiac/512 |c〉 |11a(mod21)〉

6. Measurement!

. probability for state |c, xk(mod n)〉, e.g. k = 2→ |c, 16〉 to occur:

p(c) =

∣∣∣∣ 1

512

511∑
a:11a mod 21=16

e2πiac/512

∣∣∣∣2 =

∣∣∣∣ 1

512

∑
b

e2πi(6b+2)c/512

∣∣∣∣2

. peaks for c = 512
6 · d, d ∈ Z:

7. Determine the period r

. Assume we get 427:
∣∣c
q −

d
r

∣∣ =
∣∣427

512 −
d
r

∣∣ !
≤ 1

1024

. Continued fraction expansion:

c

q
= a0 +

1

a1 + 1
a2+ 1

...

, d0 = a0, d1 = 1 + a0a1, dn = andn−1 + dn−2

r0 = 1, r1 = a1, rn = anrn−1 + rn−2

427

512
= 0 +

1

1 + 1
5+ 1

42+1
2

, d0 = 0, d1 = 1, d2 = 5, d3 = 427

r0 = 1, r1 = 1, r2 = 6, r3 = 512

. as d0
r0

= 0 and d1
r1

= 1 obviously don’t work, try d2
r2

= 5
6 → r = 6

→ it works! =)

. for c
q = 171

512 we would get d
r = 1

3, so using r = 3 this would not work.

→ it only works if d and r are coprime!

→ if it doesn’t work, try again!

8. Check r

. check if r is even X

. check if xr/2 mod n 6= −1 X

. as both holds, we can determine the factors:

xr/2 mod n− 1 = 113 mod 21− 1 = 7

xr/2 mod n + 1 = 113 mod 21 + 1 = 9

→ the two factors are gcd(7, 21) = 7 and gcd(9, 21) = 3

Conclusion

. Shor’s algorithm is very important for cryptography, as it can factor large

numbers much faster than classical algorithms (polynomial instead of

exponential)

. powerful motivator for quantum computers

. no practical use yet, as it is not possible yet to design quantum computers

that are large enough to factor big numbers

References

. Shor, Peter W. ”Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer.” SIAM journal on computing 26.5 (1997):
1484-1509.

. Agrawal, Manindra, Neeraj Kayal, and Nitin Saxena. ”PRIMES is in P.” Annals of
mathematics (2004): 781-793.

. Bernstein, Daniel. ”Detecting perfect powers in essentially linear time.” Mathe-
matics of Computation of the American Mathematical Society 67.223 (1998):
1253-1283.

. Hardy, Godfrey Harold, et al. An introduction to the theory of numbers. Vol. 4.
Oxford: Clarendon press, 1979.

. Miller, Gary L. ”Riemann’s hypothesis and tests for primality.” Journal of computer
and system sciences 13.3 (1976): 300-317.

