Shor’s Algorithm

Elisa Baumer, Jan-Grimo Sobez, Stefan Tessarini

May 15, 2015

Integer factorization

>mn = p-q (where p,q are prime numbers) is a cryptographic one-way
function

> Classical algorithm with best asymptotic behavior: General Number Field
Sieve with superpolynomial scaling: O (exp [c (In n)%(ln In n)%D

> Basis for commercially important cryptography

Shor’s algorithm

> Factorization algorithm with polynomial complexity

> Runs only partially on quantum computer with complexity
O ((log n)*(log log n)(log log log n))
> Pre- and post-processing on a classical computer

> Makes use of reduction of factorization problem to order-finding problem

> Achieves polynomial time with efficiency of Quantum Fourier Transform

Talk outline

1. Classical computer part
Sketch of various subroutines
Reduction to period-finding problem

Full classical algorithm

2. Period-finding on quantum computer
Quantum Fourier Transform

Period-finding algorithm
3. Example: Factoring 21

4. Summary

Sketch of various subroutines

> greatest common divisor: e.g. Euclidean algorithm

b if a mod b=0
ged(a, b) =
ged(b,a mod b) else

with @ > b, quadratic in number of digits of a, b.
reminder: ged(a,b) =1 — a, b coprime

> Test of primality: e.g. Agrawal-Kayal-Saxena 2002, polynomial
> Prime power test: determine if n = p“, e.g. Bernstein 1997 in O(logn)

> continued fraction expansion: required to approximate a rational number
by an integer fraction, e.g. Hardy and Wright 1979, polynomial

Reduction to period-finding problem, Miller 1976

> Find factor of odd n provided some method to calculate the order r of z* mod n,
a € N:

1. Choose a random x < n.
2. Find order r (somehow) in 2" =1 mod n.
3. Compute p, q = ged(x> & 1,n) if r even.
> Since (2 — 1)(2% +1) =2"—1=0 mod n.
> Fails if 7 odd or 22 = —1 mod n.

> Yields a factor with p = 1 — 27%*1 where k is the number of distinct odd prime
factors of n.

Shor’s algorithm

1. Determine if n is even, prime or a prime power. If so, exit.

2. Pick a random integer © < m and calculate ged(x,n). If this is not 1, then we
have obtained a factor of n.

3. Quantum algorithm
Pick ¢ as the smallest power of 2 with n? < ¢ < 2n?.

Find period r of 2 mod n.

Measurement gives us a variable ¢ which has the property < ~ g where d € N.

c

q

4. Determine d, r via continued fraction expansion algorithm.
d,r only determined if gcd(d,) = 1 (reduced fraction).

5. If r is odd, go back to 2. If 22 =—1 modn go back to 2.
Otherwise the factors p, ¢ = ged(z2 £ 1, n).

Quantum Fourier Transform (QFT)

> Define the QFT with respect to an ONB {|z)} = {]0),....,|[¢ — 1)}

1 o 1 &
FT - — . — z-y
Q |z) = \/GE ercp{ - y} 1Y) \/ayizow 1Y)

y=0

> Apply QFT to a general state 1)) = > a, |x):

QFT(|v)) Zﬁy),

where the 3,'s are the discrete Fourier transform of the amplitudes a,.

> The QFT is unitary, i.e.
QFT'QFT |2) = |a)

Quantum Fourier Transform (QFT)

> Implement QFT on n qubits

[®o) [®1) |®3) |4)
1 1 1 !
I‘T0> I H |Z/n—|>
|1'1> R2n—2 |yn7‘2>
QFTn—l
|27 —2) R? [y1)
|Zn_1) R [yo)

> With the matrix

100 0
010 0
B=1loo01 o
000 /N

Period Finding Algorithm

> Given a periodic function f: {0,....,¢ — 1} — {0,...,q — 1}, where ¢ = 2!, the periodicity conditions
are

fla) = fla+r)r#0
fla) # fla+s) Vs <.
> Initialize the q.c. with the state |®;) = |0)®*
> Then apply Hadamard gates on the first | qubits and the identity to the others:
1

o) = H 019 0)° = (50+ |1>>) ® |0y = %ir@ 0)®

> Apply the unitary that implements the function f (here it is f = x* mod n)

—_

=}

1) = Uy o) = iq a) | (a))

a

Il
=)

Period Finding Algorithm

> Imagine one performs a measurement on f(a), then the post measurement state of

the first | qubits is
r
o). =2 S .
a:f(a)=z

> Remember that f is periodic and choose ay = min {a|f(a) = z}. Now one can
rewrite

q/r—1
i
By), = ﬁ S Jag +to7)

t=0

when assuming that 7|q (i.e. r divides q).

Period Finding Algorithm

> Perform the QFT

q/r 1
5), - orr i) - i3 e {2
q
/r—1 .
[2 k 2
Zexp{—ﬂaoc} Z exp{—ﬂtrc
=0 q

> Remark: if rc = kq for some k € N then

> The probability for measuring a specific ¢ = kq/r:
- 2
Pl =[(¢]2)] = zlael = 575

q q2 r2

Period Finding Algorithm

> Overall probability to measure a c of the form % is then
1
> KB =r =1
c=kq/r

> The algorithm output is a natural number that is of the form %, with

ke N.

Example: Factoring n=21

O N o g & D

. Choose x

Determine q

Initialize first register (ry)

Initialize second register (r9)

QFT on first register

Measurement

Continued Fraction Expansion — determine r

Check r — determine factors

1. Choose a random integer x, 1 < x <n

> if it is not coprime with n, e.g. = 6:
— ged(x,n) = ged(6,21) =3 — 21/3 =7 — donel!

> if it is coprime with n, e.g. x = 11:
— ged(11,21) = 1 — continue!

2. Determine q

!
>n? =244 < g =2 < 2n? =882
—q=512=2

> Initial state consisting of two registers of length I:
21
@) = |0),, [0),, = [0)"

T2

3. Initialize 4

> initialize first register with superposition of all states a(mod q):

1 011
Qy) = — a) |0
00 = 5 Dl

> this corresponds to %(](D +{1)) on all bits

4. Initialize 75

> initialize second register with superposition of all states z%(mod n):

‘ -

(10) [1) + 1) [11) + [2) [16) + [3) |8) +...)

1
V512
1

2 13[4/ 5|/6/7|89[10/...
11%(mod21) | 11111168 |/4/2|1|11|16|8| 4

> r = 6, but not yet observable

5. Quantum Fourier Transform

> apply the QFT on the first register:

511 511
1

_ 5@ Z Z 627rz'ac/512 ‘C> \11“(m0d21)>

a=0 c=0

@)

6. Measurement!

> probability for state |c, 2*(mod n)), e.g. k=2 — |c, 16) to occur:

1 511 2 1 9
_ 2miac/512| _ 27 (6b+2)c/512
Po=lmg D '—512 2.
a:11% mod 21=16 b

0.2

256 512

o
—
w

85 171 41 427

Probability Amplitude
o

o
&

‘C N JLL

> peaks for CcC = % . d, d -~ 7 100 200 300 400 500

7. Determine the period r

!
> Assume we get 427: ’g — 4 =84 <
> Continued fraction expansion:
1
—=ay+ 1 do = ag, di =1+ apay,
a1 T a2+%
TO _ 17 ry = al)
427 1
1o 1) d0_07 d1:17 d2:5,
512 1+ .
S—Lo
42+5
r = 1, Tro = 6

d, = apdy—1 + dp_o

Tn = ApTp—1 + Tp—2

ds = 427

7”3:512

)

>as % =0 and & = 1 obviously don't work, try 2 =2 — r =6
ro 1 79

6
— it works! =)

_ 17 1
> for < . = 50 =3

— it only works if d and r are coprime!

we would get 2 so using 7 = 3 this would not work.

— if it doesn't work, try again!

8. Check r

> check if ris even V
> check if /2 modn+# —1 v

> as both holds, we can determine the factors:

22 modn—1=11° mod2l —1=7
22 modn+1=11° mod?21+1=9

— the two factors are ged(7,21) = 7 and ged(9,21) = 3

Conclusion

> Shor's algorithm is very important for cryptography, as it can factor large
numbers much faster than classical algorithms (polynomial instead of
exponential)

> powerful motivator for quantum computers

> no practical use yet, as it is not possible yet to design quantum computers
that are large enough to factor big numbers

References

> Shor, Peter W. "Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer.” SIAM journal on computing 26.5 (1997):
1484-15009.

> Agrawal, Manindra, Neeraj Kayal, and Nitin Saxena. "PRIMES is in P." Annals of
mathematics (2004): 781-793.

> Bernstein, Daniel. "Detecting perfect powers in essentially linear time.”" Mathe-
matics of Computation of the American Mathematical Society 67.223 (1998):
1253-1283.

> Hardy, Godfrey Harold, et al. An introduction to the theory of numbers. Vol. 4.
Oxford: Clarendon press, 1979.

> Miller, Gary L. "Riemann’s hypothesis and tests for primality.” Journal of computer
and system sciences 13.3 (1976): 300-317.

