Shor's Algorithm

May 15, 2015

Elisa Bäumer, Jan-Grimo Sobez, Stefan Tessarini

Integer factorization

- $\triangleright n = p \cdot q$ (where p,q are prime numbers) is a cryptographic one-way function
- ightharpoonup Classical algorithm with best asymptotic behavior: General Number Field Sieve with superpolynomial scaling: $O\left(\exp\left[c\;(\ln n)^{\frac{1}{3}}(\ln \ln n)^{\frac{2}{3}}\right]\right)$
- ▷ Basis for commercially important cryptography

Shor's algorithm

- ▷ Runs only partially on quantum computer with complexity $O\left((\log n)^2(\log\log n)(\log\log\log n)\right)$
- ▶ Pre- and post-processing on a classical computer
- ▶ Makes use of reduction of factorization problem to order-finding problem
- > Achieves polynomial time with efficiency of Quantum Fourier Transform

Talk outline

1. Classical computer part

Sketch of various subroutines

Reduction to period-finding problem

Full classical algorithm

2. Period-finding on quantum computer

Quantum Fourier Transform

Period-finding algorithm

- 3. Example: Factoring 21
- 4. Summary

Sketch of various subroutines

- ⊳ greatest common divisor: e.g. Euclidean algorithm
 - $\gcd(a,b) = \begin{cases} b & \text{if } a \mod b = 0\\ \gcd(b, a \mod b) & \text{else} \end{cases}$
 - with a > b, quadratic in number of digits of a, b.
 - reminder: $gcd(a, b) = 1 \rightarrow a, b$ coprime
- ▶ Test of primality: e.g. Agrawal-Kayal-Saxena 2002, polynomial
- \triangleright Prime power test: determine if $n=p^{\alpha}$, e.g. Bernstein 1997 in $O(\log n)$
- by an integer fraction, e.g. Hardy and Wright 1979, polynomial

Reduction to period-finding problem, Miller 1976

- ightharpoonup Find factor of odd n provided some method to calculate the order r of $x^a \mod n$, $a \in \mathbb{N}$:
 - 1. Choose a random x < n.
 - 2. Find order r (somehow) in $x^r \equiv 1 \mod n$.
 - 3. Compute $p, q = \gcd(x^{\frac{r}{2}} \pm 1, n)$ if r even.
- ightharpoonup Since $(x^{\frac{r}{2}} 1)(x^{\frac{r}{2}} + 1) = x^r 1 \equiv 0 \mod n$.
- ightharpoonup Fails if r odd or $x^{\frac{r}{2}} \equiv -1 \mod n$.
- \triangleright Yields a factor with $p=1-2^{-k+1}$ where k is the number of distinct odd prime factors of n.

Shor's algorithm

- 1. Determine if n is even, prime or a prime power. If so, exit.
- 2. Pick a random integer x < n and calculate gcd(x, n). If this is not 1, then we have obtained a factor of n.
- 3. Quantum algorithm

Pick q as the smallest power of 2 with $n^2 \le q < 2n^2$.

Find period r of $x^a \mod n$.

Measurement gives us a variable c which has the property $\frac{c}{a} \approx \frac{d}{r}$ where $d \in \mathbb{N}$.

- 4. Determine d, r via continued fraction expansion algorithm. d, r only determined if gcd(d, r) = 1 (reduced fraction).
- 5. If r is odd, go back to 2. If $x^{\frac{r}{2}} \equiv -1 \mod n$ go back to 2. Otherwise the factors $p, q = \gcd(x^{\frac{r}{2}} \pm 1, n)$.

Quantum Fourier Transform (QFT)

 \triangleright Define the QFT with respect to an ONB $\{|x\rangle\} = \{|0\rangle, ..., |q-1\rangle\}$

$$QFT: |x\rangle \mapsto \frac{1}{\sqrt{q}} \sum_{y=0}^{q-1} exp\left\{ \frac{2\pi i}{q} x \cdot y \right\} |y\rangle = \frac{1}{\sqrt{q}} \sum_{y=0}^{q-1} \omega^{x \cdot y} |y\rangle$$

 \triangleright Apply QFT to a general state $|\psi\rangle = \sum_{x} \alpha_x |x\rangle$:

$$QFT(|\psi\rangle) = \frac{1}{\sqrt{q}} \sum_{y=0}^{q-1} \beta_y |y\rangle,$$

where the β_y 's are the discrete Fourier transform of the amplitudes α_x .

$$QFT^{\dagger}QFT|x\rangle = |x\rangle$$

Quantum Fourier Transform (QFT)

▷ Implement QFT on n qubits

▶ With the matrix

$$R = \left(\begin{array}{cccc} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & e^{2\pi i/N} \end{array}\right)$$

 \triangleright Given a periodic function $f: \{0,...,q-1\} \rightarrow \{0,...,q-1\}$, where $q=2^l$, the periodicity conditions are

$$f(a) = f(a+r) \ r \neq 0$$

$$f(a) \neq f(a+s) \ \forall s < r.$$

- ightharpoonup Initialize the q.c. with the state $|\Phi_I\rangle=|0\rangle^{\otimes 2l}$
- ▶ Then apply Hadamard gates on the first I qubits and the identity to the others:

$$|\Phi_0\rangle = H^{\otimes l} \otimes \mathbb{1}^{\otimes l} |0\rangle^{\otimes 2l} = \left(\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)\right)^{\otimes l} \otimes |0\rangle^{\otimes l} = \frac{1}{\sqrt{q}} \sum_{q=0}^{q-1} |a\rangle |0\rangle^{\otimes l}$$

 \triangleright Apply the unitary that implements the function f (here it is $f = x^a \mod n$)

$$|\Phi_1\rangle = U_f |\Phi_0\rangle = \frac{1}{\sqrt{q}} \sum_{a=0}^{q-1} |a\rangle |f(a)\rangle$$

 \triangleright Imagine one performs a measurement on f(a), then the post measurement state of the first I qubits is

$$|\Phi_1\rangle_z = \sqrt{\frac{r}{q}} \sum_{a: f(a)=z} |a\rangle.$$

 \triangleright Remember that f is periodic and choose $a_0 = min\{a|f(a)=z\}$. Now one can rewrite

$$|\Phi_1\rangle_z = \sqrt{\frac{r}{q}} \sum_{t=0}^{q/r-1} |a_0 + t \cdot r\rangle$$

when assuming that r|q (i.e. r divides q).

▷ Perform the QFT

$$\left|\tilde{\Phi}\right\rangle_{z} = QFT^{-1}(\left|\Phi_{1}\right\rangle_{z}) = \sqrt{\frac{r}{q}} \sum_{t=0}^{q/r-1} \frac{1}{\sqrt{q}} \sum_{c=0}^{q-1} \exp\left\{\frac{-2\pi i}{q} (a_{0} + rt)c\right\} \left|c\right\rangle$$

$$= \sqrt{\frac{r}{q^{2}}} \sum_{c=0}^{q-1} \exp\left\{-\frac{2\pi i}{q} a_{0}c\right\} \underbrace{\sum_{t=0}^{q/r-1} \exp\left\{-\frac{2\pi i}{q} trc\right\}}_{c} \left|c\right\rangle.$$

 \triangleright Remark: if rc = kq for some $k \in \mathbb{N}$ then

$$\alpha_c = \frac{q}{r}$$
.

 \triangleright The probability for measuring a specific c' = kq/r:

$$P[c'] = \left| \left\langle c' \left| \tilde{\Phi} \right\rangle \right|^2 = \frac{r}{q^2} \left| \alpha_{c'} \right|^2 = \frac{r}{q^2} \frac{q^2}{r^2} = \frac{1}{r}$$

 \triangleright Overall probability to measure a c of the form $\frac{kq}{r}$ is then

$$\sum_{c=lrg/r} \left| \left\langle c' \left| \tilde{\Phi} \right\rangle \right|^2 = r \frac{1}{r} = 1$$

 \triangleright The algorithm output is a natural number that is of the form $\frac{kq}{r}$, with $k \in \mathbb{N}$.

Example: Factoring n=21

- 1. Choose x
- 2. Determine q
- 3. Initialize first register (r_1)
- 4. Initialize second register (r_2)
- 5. QFT on first register
- 6. Measurement
- 7. Continued Fraction Expansion \rightarrow determine r
- 8. Check $r \rightarrow$ determine factors

1. Choose a random integer x, 1 < x < n

- \triangleright if it is not coprime with n, e.g. x = 6:
 - $\to \gcd(x,n) = \gcd(6,21) = 3 \to 21/3 = 7 \to \mathsf{done!}$
- \triangleright if it is coprime with n, e.g. x = 11:
 - $\rightarrow \gcd(11,21) = 1 \rightarrow \mathsf{continue!}$

2. Determine q

▷ Initial state consisting of two registers of length I:

$$|\Phi_i\rangle = |0\rangle_{r_1} |0\rangle_{r_2} = |0\rangle^{\otimes 2^l}$$

3. Initialize r_1

 \triangleright initialize first register with superposition of all states $a \pmod{q}$:

$$|\Phi_0\rangle = \frac{1}{\sqrt{512}} \sum_{a=0}^{511} |a\rangle |0\rangle$$

 \triangleright this corresponds to $\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$ on all bits

4. Initialize r_2

 \triangleright initialize second register with superposition of all states $x^a \pmod{n}$:

$$|\Phi_1\rangle = \frac{1}{\sqrt{512}} \sum_{a=0}^{511} |a\rangle |11^a \pmod{21}\rangle$$
$$= \frac{1}{\sqrt{512}} (|0\rangle |1\rangle + |1\rangle |11\rangle + |2\rangle |16\rangle + |3\rangle |8\rangle + ...)$$

 $\triangleright r = 6$, but not yet observable

5. Quantum Fourier Transform

□ poly the QFT on the first register:

$$|\tilde{\Phi}\rangle = \frac{1}{512} \sum_{a=0}^{511} \sum_{c=0}^{511} e^{2\pi i a c/512} |c\rangle |11^a (mod 21)\rangle$$

6. Measurement!

ightharpoonup probability for state $|c, x^k \pmod{n}$, e.g. $k = 2 \to |c, 16\rangle$ to occur:

$$p(c) = \left| \frac{1}{512} \sum_{a:11^a \mod 21=16}^{511} e^{2\pi i a c/512} \right|^2 = \left| \frac{1}{512} \sum_b e^{2\pi i (6b+2)c/512} \right|^2$$

 \triangleright peaks for $c = \frac{512}{6} \cdot d$, $d \in \mathbb{Z}$:

7. Determine the period r

▷ Assume we get 427:
$$\left| \frac{c}{q} - \frac{d}{r} \right| = \left| \frac{427}{512} - \frac{d}{r} \right| \stackrel{!}{\leq} \frac{1}{1024}$$

$$\frac{c}{q} = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{\dots}}}, \quad d_0 = a_0, \quad d_1 = 1 + a_0 a_1, \quad d_n = a_n d_{n-1} + d_{n-2}$$

$$r_0 = 1, \quad r_1 = a_1, \quad r_n = a_n r_{n-1} + r_{n-2}$$

$$\frac{427}{512} = 0 + \frac{1}{1 + \frac{1}{5 + \frac{1}{42 + \frac{1}{2}}}}, \quad d_0 = 0, \quad d_1 = 1, \quad d_2 = 5, \quad d_3 = 427$$

$$r_0 = 1, \quad r_1 = 1, \quad r_2 = 6, \quad r_3 = 512$$

ho as $rac{d_0}{r_0}=0$ and $rac{d_1}{r_1}=1$ obviously don't work, try $rac{d_2}{r_2}=rac{5}{6}
ightarrow r=6$

 \rightarrow it works! =)

ightarrow if it doesn't work, try again!

 \triangleright for $\frac{c}{a} = \frac{171}{512}$ we would get $\frac{d}{r} = \frac{1}{3}$, so using r = 3 this would not work.

 \rightarrow it only works if d and r are coprime!

8. Check r

$$ightharpoonup$$
 check if $x^{r/2} \mod n \neq -1$

> as both holds, we can determine the factors:

$$x^{r/2} \mod n - 1 = 11^3 \mod 21 - 1 = 7$$

 $x^{r/2} \mod n + 1 = 11^3 \mod 21 + 1 = 9$

 \rightarrow the two factors are $\gcd(7,21)=7$ and $\gcd(9,21)=3$

Conclusion

- Shor's algorithm is very important for cryptography, as it can factor large numbers much faster than classical algorithms (polynomial instead of exponential)
- > powerful motivator for quantum computers
- ▷ no practical use yet, as it is not possible yet to design quantum computers that are large enough to factor big numbers

References

- Shor, Peter W. "Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer." SIAM journal on computing 26.5 (1997): 1484-1509.
- ▶ Agrawal, Manindra, Neeraj Kayal, and Nitin Saxena. "PRIMES is in P." Annals of mathematics (2004): 781-793.
- ▶ Bernstein, Daniel. "Detecting perfect powers in essentially linear time." Mathematics of Computation of the American Mathematical Society 67.223 (1998): 1253-1283.
- ▶ Hardy, Godfrey Harold, et al. An introduction to the theory of numbers. Vol. 4.
 Oxford: Clarendon press, 1979.

▶ Miller, Gary L. "Riemann's hypothesis and tests for primality." *Journal of computer*

and system sciences 13.3 (1976): 300-317.