Cavity Quantum Electrodynamics (QED): Coupling a Harmonic Oscillator to a Qubit

Cavity QED with Superconducting Circuits

coherent quantum mechanics with individual photons and qubits ...

What is this good for?

- Isolating qubits from their environment
- Maintain addressability of qubits
- Reading out the state of qubits
- Coupling qubits to each other
- Converting stationary qubits to flying qubits

Controlling Light-Matter Interactions

challenging on the level of single (artificial) atoms and single photons

- mode-matching (controlling the absorption probability)
- single photon fields E_o (small in 3D)
- dipole moment d (usually small ~ ea_o)
- photon/dipole interaction $\hbar g \sim dE_0$ (usually small)

What to do?

- confine atom and photon in a cavity (cavity QED)
- engineer matter/light interactions, e.g. in solid state circuits

Cavity Quantum Electrodynamics

coupling photons to qubits:

Jaynes-Cummings Hamiltonian

$$H = \hbar\omega_r \left(a^{\dagger}a + \frac{1}{2}\right) + \frac{\hbar\omega_a}{2}\sigma^z + \hbar g(a^{\dagger}\sigma^- + a\sigma^+) + H_{\kappa} + H_{\gamma}$$

strong coupling limit $(g = dE_0/\hbar > \gamma, \kappa, 1/t_{\text{transit}})$

ETH |

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich D. Walls, G. Milburn, Quantum Optics (Spinger-Verlag, Berlin, 1994)

Dressed States Energy Level Diagram

$$H = \hbar \omega_r \left(a^{\dagger} a + \frac{1}{2} \right) + \frac{\hbar \omega_a}{2} \sigma^z + \hbar g (a^{\dagger} \sigma^- + a \sigma^+)$$

i i i
e:

$$- \omega_r = \Delta = 0$$

$$|2\rangle - \frac{2g\sqrt{2}}{2} - |1\rangle$$

$$|2\rangle - \frac{2g}{2g\sqrt{2}} - |1\rangle$$

$$|1\rangle - \frac{2g}{2g\sqrt{2}} - |0\rangle$$
bling limit:

$$|0\rangle - \frac{dE_0}{2g\sqrt{2}} - \frac{|g\rangle}{2g\sqrt{2}} - \frac{|e\rangle}{2g\sqrt{2}}$$

Jaynes-Cummings Ladder

Atomic cavity quantum electrodynamics reviews: J. Ye., H. J. Kimble, H. Katori, *Science* **320**, 1734 (2008) S. Haroche & J. Raimond, Exploring the Quantum, OUP Oxford (2006)

in resonance:

$$\omega_a - \omega_r = \Delta = 0$$

strong coupli

$$g = \frac{dE_0}{\hbar} > \gamma, \ \kappa$$

Cavity Quantum Electrodynamics (QED)

alkali atoms MPQ, Caltech, ...

Rydberg atoms ENS, MPQ, ...

superconductor circuits Yale, Delft, NTT, ETHZ, NIST, ... semiconductor quantum dots Wurzburg, ETHZ, Stanford ...

Vacuum Rabi Oscillations with Rydberg Atoms

Review: J. M. Raimond, M. Brune, and S. Haroche *Rev. Mod. Phys.* 73, 565 (2001)
P. Hyafil, ..., J. M. Raimond, and S. Haroche, *Phys. Rev. Lett.* 93, 103001 (2004)

Vacuum Rabi Mode Splitting with Alkali Atoms

R. J. Thompson, G. Rempe, & H. J. Kimble, *Phys. Rev. Lett.* 68 1132 (1992)
A. Boca, ..., J. McKeever, & H. J. Kimble *Phys. Rev. Lett.* 93, 233603 (2004)

Cavity QED with Superconducting Circuits

coherent quantum mechanics with individual photons and qubits ...

... basic approach:

Proposals for Cavity QED with Superconducting Circuits

coherent quantum mechanics with individual photons and qubits ...

a number of approaches suggested at the time:

- discrete LC circuits: •
- large Josephson junctions: •
- Y. Makhlin, G. Schön, and A. Shnirman, Rev. Mod. Phys. 73, 357 (2001).
- O. Buisson and F. Hekking, in *Macroscopic Quantum Coherence and Quantum Computing*, edited by D. V. Averin, B. Ruggiero, and P. Silvestrini (Kluwer, New York, 2001).
 - F. Marquardt and C. Bruder, Phys. Rev. B 63, 054514 (2001).
 - F. Plastina and G. Falci, Phys. Rev. B 67, 224514 (2003).
 - A. Blais, A. Maassen van den Brink, and A. Zagoskin, Phys. Rev. Lett. 90, 127901 (2003).
 - 3D cavities: W. Al-Sa
 - W. Al-Saidi and D. Stroud, Phys. Rev. B 65, 014512 (2001).
 - C.-P. Yang, S.-I. Chu, and S. Han, Phys. Rev. A 67, 042311 (2003).
 - J. Q. You and F. Nori, Phys. Rev. B 68, 064509 (2003).

Circuit QED and its Different Realizations

Z. Kim et al., PRL 106, 120501 (2011)

weakly nonlinear junction:

I. Chiorescu et al., Nature 431, 159 (2004)

3D cavity:

H. Paik *et al., PRL* 107, 240501 (2011)

planar transmission line resonator:

A. Wallraff et al., Nature 431, 162 (2004)

Cavity QED with Superconducting Circuits

Swiss Federal Institute of Technology Zurich

Circuit Quantum Electrodynamics

elements

- the cavity: a superconducting 1D transmission line resonator with large vacuum field E_o and long photon life time $1/\kappa$
- the artificial atom: a Cooper pair box with large E_J/E_C with large dipole moment *d* and long coherence time $1/\gamma$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich A. Blais et al., PRA 69, 062320 (2004)

Vacuum Field in 1D Cavity

cross-section of transm. line (TEM mode):

voltage across resonator in vacuum state (n = 0)

harmonic oscillator

$$H_r = \hbar \omega_r \left(a^{\dagger} a + \frac{1}{2} \right)$$

 $imes 10^6$ larger than E_0 in 3D microwave cavity

for
$$\omega_r/2\pipprox 6\,{
m GHz}$$
 ($C\sim 1\,{
m pF}$), $bpprox 5\,{
m \mu m}$

 $V_{0,\rm rms} = \sqrt{\frac{\hbar\omega_r}{2C}} \approx 1\,\mu\rm{V}$

 $E_0 = \frac{V_{0,\mathrm{rms}}}{b} \approx 0.2 \,\mathrm{V/m}$

Qubit/Photon Coupling

Hamilton operator of qubit (2-level approx.) coupled to resonator:

$$\hat{H} = \frac{\hat{Q}^2}{2C} + \frac{\hat{\phi}^2}{2L} + \frac{E_C}{2}(1 - 2(N_g + \hat{N}_g))\hat{\sigma}_z - \frac{E_J}{2}\hat{\sigma}_x$$

quantum part of gate voltage due to resonator

$$\hat{N}_g = \frac{C_g}{2e}\hat{V}_g = \frac{C_g}{2e}\sqrt{\frac{\hbar\omega_r}{2C}}(\hat{a}^{\dagger} + \hat{a})$$

Jaynes-Cummings Hamiltonian

Consider bias at charge degeneracy $N_g = 1/2$ and change of qubit basis (z to x, x to -z)

$$\hat{H} = \hbar\omega_r(\hat{a^{\dagger}}\hat{a} + 1/2) + \frac{E_J}{2}\hat{\sigma}_z + \frac{E_C}{2}\frac{C_g}{2e}\sqrt{\frac{\hbar\omega_r}{2C}}(\hat{a^{\dagger}} + \hat{a})\hat{\sigma}_x$$

Use qubit raising and lowering operators $\hat{\sigma}_x = \hat{\sigma}^+ + \hat{\sigma}^-$

Coupling term in the rotating wave approximation (RWA)

$$\hat{H}_g = \frac{E_C}{2} \frac{C_g}{2e} \sqrt{\frac{\hbar\omega_r}{2C}} (\hat{a}^{\dagger} \hat{\sigma}^- + \hat{g} \hat{\sigma}^- + \hat{a}^{\dagger} \hat{\sigma}^+ + \hat{a} \hat{\sigma}^+) \approx \hbar g (\hat{a}^{\dagger} \hat{\sigma}^- + \hat{a} \hat{\sigma}^+)$$

Coupling strength of the Jaynes Cummings Hamiltonian

$$\hbar g = \frac{C_g}{C_{\Sigma}} 2e \sqrt{\frac{\hbar \omega_r}{2C}}$$

Vacuum-Rabi frequency

$$u_R = \frac{2g}{2\pi} \approx 1 \dots 300 \,\mathrm{MHz}$$

 $g \gg [\kappa, \gamma]$ possible!

Qubit/Photon Coupling in a Circuit

qubit coupled to resonator

coupling strength:

$$\hbar g = eV_{0,\rm rms} \frac{C_g}{C_{\Sigma}}$$

$$\implies \nu_{\rm vac} = \frac{g}{\pi} \approx 1 \dots 300 \,\mathrm{MHz}$$

 $g \gg [\kappa, \gamma]$ possible!

large effective dipole moment

$$d = \frac{\hbar g}{E_0} \sim 10^2 \dots 10^4 \, ea_0$$

Circuit QED with One Photon

superconducting cavity QED circuit

A. Wallraff, ..., R. J. Schoelkopf, Nature (London) 431, 162 (2004)

J. Mlynek et al., Quantum Device Lab, ETH Zurich (2012)

Sample Mount

M. Peterer *et al.*, Quantum Device Lab, ETH Zurich (2012)

Cryostate for temperatures down to 0.02 K

VeriCold

Microwave control &

measurement equipment

equeque

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

71.

~ 20 cm

A Circuit QED Lab at ETH Zurich

Eidgenössische Tochnische Machschule Zürich Swiss Federal Institute of Technology Zurich

- 1H-

MONSES FOR

How to Measure Single Microwave Photons

• average power to be detected

 $\rightarrow \langle n=1 \rangle \hbar \omega_r \kappa / 2 \approx P_{RF} = -140 \,\mathrm{dBm} = 10^{-17} \,\mathrm{W}$

- efficient with cryogenic low noise HEMT amplifier ($T_N = 6 \,\mathrm{K}$)
- prevent leakage of thermal photons (cold attenuators and circulators)

Resonant Vacuum Rabi Mode Splitting ...

... with one photon (n=i):

very strong coupling:

forming a 'molecule' of a qubit and a photon

first demonstration in a solid: A. Wallraff e*t al., Nature (London)* 431, 162 (2004) this data: J. Fink et al., *Nature (London)* 454, 315 (2008) R. J. Schoelkopf, S. M. Girvin, *Nature (London)* 451, 664 (2008)

Resonant Vacuum Rabi Mode Splitting ...

forming a 'molecule' of a qubit and a photon

first demonstration in a solid: A. Wallraff e*t al., Nature (London)* 431, 162 (2004) this data: J. Fink et al., *Nature (London)* 454, 315 (2008) R. J. Schoelkopf, S. M. Girvin, *Nature (London)* 451, 664 (2008)

Read-Out ...

... of superconducting qubits

Qubit Read Out

Dispersive Approximation of the J-C Hamiltonian

Jaynes-Cummings Hamiltonian

$$H = \hbar\omega_r \left(a^{\dagger}a + \frac{1}{2}\right) + \frac{\hbar\omega_a}{2}\sigma^z + \hbar g(a^{\dagger}\sigma^- + a\sigma^+)$$

Unitary transformation

$$\tilde{H} = UHU^{\dagger}$$
 with $U = \exp \frac{g}{\Delta} (a\sigma^{+} - a^{\dagger}\sigma^{-})$
and $\Delta = \omega_{a} - \omega_{r}$

Results in dispersive approximation up to 2nd order in g

$$\tilde{H} \approx \hbar \left(\omega_r + \frac{g^2}{\Delta} \sigma_z \right) a^{\dagger} a + \frac{1}{2} \hbar \left(\omega_a + \frac{g^2}{\Delta} \right) \sigma_z$$

A. Blais, et al., PRA 69, 062320 (2004)

Non-Resonant (Dispersive) Interaction

approximate diagonalization for $|\Delta| = |\omega_a - \omega_r| \gg g$ 2 $H \approx \hbar \left(\omega_r + \frac{g^2}{\Delta} \sigma_z \right) a^{\dagger} a + \frac{1}{2} \hbar \left(\omega_a + \frac{g^2}{\Delta} \right) \sigma_z$ 1) cavity frequency shift 0 le) lg) 2g²/∆ qubit detuned by Δ Transmission (arb. units) from resontaor egA. Blais *et al., PRA* 69, 062320 (2004) A. Wallraff et al., Nature (London) 431, 162 (2004) $\uparrow \omega_{r} - g^{2}/\Delta \omega_{r} \omega_{r} + g^{2}/\Delta$ ω D. I. Schuster *et al., Phys. Rev. Lett.* 94, 123062 (2005)

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich A. Fragner *et al., Science* 322, 1357 (2008)

Dispersive Read-Out

approximate diagonalization in the dispersive limit $|\Delta| = |\omega_a - \omega_r| \gg g$

$$H \approx \hbar \left(\omega_r + \frac{g^2}{\Delta} \sigma_z \right) a^{\dagger} a + \frac{1}{2} \hbar \left(\omega_a + \frac{g^2}{\Delta} \right) \sigma_z$$

$$\downarrow \\ \downarrow \\ cavity frequency shift$$

$$|e\rangle : \epsilon < 1$$

$$\downarrow e\rangle : \epsilon < 1$$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich A. Blais et al., PRA 69, 062320 (2004)

Qubit-Readout (Averaged)

single-shot measurements: averaged measurements (8 104): Conventional HEMT 5 1 [a.u] 0 -5 $\left(0 \right)$ -1 2 3 5 2 3 5 4 4 time $[\mu s]$ time [µs] Cout RF amp mixer bias tee Cin Cg Vg · ωs ω_{RF} ωLO CJ,EJ

> P. Kurpiers, Y. Salathe *et al, ETH Zurich* (2013) R. Vijay *et al., PRL* 106, 110502 (2011)

Improved using a Quantum Limited Amplifier

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich P. Kurpiers, Y. Salathe *et al, ETH Zurich* (2013) R. Vijay *et al., PRL* 106, 110502 (2011)

Single-Shot Single-Qubit Readout

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich R. Vijay *et al., PRL* 106, 110502 (2011)

Statistics of Integrated Single-Shot Readout

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

P. Kurpiers, Y. Salathe *et al*, *ETH Zurich* (2013)

Near Quantum-Limited Parametric Amplifier

The Lamb and AC-Stark Shifts

signatures of the dispersive interaction with a quantum field

for
$$\Delta = \omega_a - \omega_r \gg g$$

 $H \approx \hbar \omega_r a^{\dagger} a + \frac{1}{2} \hbar \left(\omega_a + \frac{g^2}{\Delta} + \frac{2g^2}{\Delta} a^{\dagger} a \right) \sigma_z$
 $\tilde{\omega}_a \approx \omega_a + \frac{g^2}{\Delta} + \frac{2g^2}{\Delta} n$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich M. Brune *et al., Phys. Rev. Lett.* **72**, 3339 (1994) A. Blais *et al., PRA* **69**, 062320 (2004)

Measurements of the Lamb and Quantized Stark Shifts

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich A. Fragner et al., Science **322**, 1357 (2008)

Measurement of the Lamb Shift

- qubit and photon component of joint state are measured
- accurate knowledge of qubit parameters possible

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich A. Fragner *et al., Science* 322, 1357 (2008)

Quantum AC-Stark Shift and Lamb Shift

- populate resonator with small coherent field (Poisson distribution of photon number)
- spectroscopic measurement of qubit line shape
- qubit frequencies ac-Stark shifted by quantized cavity field

