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Zusammenfassung

Die Verwendung von Josephson-Tunnelkontakten als künstliche Atome und deren
starke Kopplung an einzelne Mikrowellenphotonen haben es während der letzten
zehn Jahr ermöglicht, einzelne Energiequanten in nichtlinearen Schaltkreisen zu
kontrollieren. Obwohl die Präparation und Manipulation von quantenmechanischen
Zuständen auf einzelnen Mikrochips mittlerweile mit hoher Präzision möglich sind,
stellt es nach wie vor eine große Herausforderung dar, einzelne propagierende Mikro-
wellenphotonen mit ähnlich hoher Effizienz zu detektieren. Entsprechende physi-
kalische Methoden könnten den Weg für eine mikrowellen-basierte Quantenkommu-
nikation ebnen.

Statt Photonen mit Hilfe von Einzelphoton-Detektoren zu messen, werden im
Bereich der Mikrowellenstrahlung bis jetzt meist lineare, transistor-basierte Verstärker
im Messprozess verwendet, die ein hohes Maß an Rauschen zum detektierten Signal
hinzufügen. Vor allem durch dieses Rauschen bedingt, existierten bis vor Kurzem
keine Experimente zur Messung der Photonstatistik und der Kohärenzeigenschaften
von propagierenden Mikrowellenfeldern jenseits der Gauss’schen Eigenschaften.

In der vorliegenden Arbeit beschreibe ich die Charakterisierung von Mikrowellen-
feldern mittels linearer Detektion und deren quantemechanische Verschränkung mit
einem stationären Zwei-Niveau-System. Wir haben unterschiedlichste Typen von
quantenmechanischen Feldern erzeugt, die von Fock-Zuständen, über gequetschte
Strahlung bishin zu räumlich verschränkten Zuständen zweier Photonen reichen.
Allgemeine Konzepte und Methoden wurden ausgearbeitet, um die Quanteneigen-
schaften dieser Felder auch mit kommerziell verfügbaren linearen Verstärkern zu
messen. Darüber hinaus haben wir quantenlimitierte Verstärker entwickelt, die zu
einer wesentlichen Verbesserung der Detektionseffizienz führen und die Messung
von Feldkorrelationen höherer Ordnung experimentell zugänglich machen. Basierend
auf diesen Erkenntnissen und Entwicklungen, waren wir erstmals in der Lage die
Verschränkung einzelner Photonen mit einem supraleitenden künstlichen Atom zu
beobachten.

Die beschriebenen Resultate weisen in eine vielversprechende Richtung für
zukünftige Experimente, in denen Mikrowellenphotonen als Quanteninformations-
träger makroskopische Distanzen überwinden. Insbesondere die Möglichkeit Ver-
schränkungskorrelationen zwischen stationären Zwei-Niveau-Systemen und einzelnen
sich ausbreitenden Mikrowellenphotonen zu generieren, zu lenken und zu detektieren,
rückt die Realisierung von Quantennetzwerken mit supraleitenden Schaltkreisen in
erreichbare Nähe.



Abstract

Josephson junction based artificial atoms and their strong coupling to single microwave
photons have enabled a variety of quantum control experiments in nonlinear electronic
circuits during the past decade. While the on-demand generation and the processing of
quantum states on a chip can now be achieved with high fidelity, it remains challenging
to detect and to characterize single quanta of propagating microwave fields with equally
high efficiency. Bridging this gap would open a novel quantum communication channel
based on superconducting circuits and microwave radiation.

Instead of detecting individual photons one by one, microwave fields are most
commonly measured using transistor-based linear amplifiers, which add a significant
amount of noise during the amplification. Mainly due to this added noise, measure-
ments of photon statistics and coherence properties beyond the Gaussian level did not
exist in this frequency range until recently.

In this thesis, I report the use of linear detection schemes for the characterization
of itinerant microwave radiation and its entanglement with a stationary qubit. We
have generated various types of quantum fields, ranging from on-demand single-
and two-photon Fock states, over squeezed radiation, to N00N-type entangled fields,
which propagate in two spatially separated paths. A detailed theoretical framework
has been developed to measure the statistical properties of these fields efficiently in
the presence of noise added during detection. We have also realized quantum-limited
parametric amplifiers, which significantly increase the detection efficiency and enable
us to access higher order field correlations. Based on these achievements we have been
able to observe entanglement between a superconducting artificial atom and single
propagating microwave photons, for the first time.

Our results point in a promising direction for future experiments, in which prop-
agating microwave fields carry quantum information over macroscopic distances.
Particularly, the ability to synthesize, guide and detect entanglement correlations
between itinerant photons and stationary qubits put the realization of microwave based
quantum networks within reach.





These then are some illustrations of things that are happening in modern times – the
transistor, the laser, and now these junctions, whose ultimate practical applications
are still not known. The quantum mechanics which was discovered in 1926 has had
nearly 40 years of development, and rather suddenly it has begun to be exploited
in many practical and real ways. We are really getting control of nature on a very
delicate and beautiful level.

— Richard P. Feynman (1963) —
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Chapter 1
Introduction: Probing quantum
physics in superconducting circuits

1.1 Historical overview

The quantum character of electromagnetism naturally becomes observable when the
dynamics of single charged particles such as electrons in an atom are studied. After
the first experimental indications for a quantum-mechanical energy level discretization
[Planck01, Bohr13, Einstein05] and the general theoretical formulation of quantum
electrodynamics (QED) [Dirac27, Feynman50, Dyson49], the quantum nature of
radiation and matter has been explored during a century of atomic physics and quantum
optics research. Today, this allows for generating and processing quantum states of
single atoms and photons with remarkable control.

In addition to its consequences for the behavior of single particles, quantum the-
ory imposes an exchange symmetry to the wave function of many-particle systems
[Pauli40]. This global symmetry can lead to the formation of collective matter states
in which a macroscopic number of particles is described by an effective single particle
wave function. With the emergence of collective phenomena such as Bose-Einstein
condensation [Anderson95, Davis95] and superconductivity [Bardeen57], the ques-
tion arose whether the associated collective excitations may posses coherent quantum
dynamics similar to those obeyed by single elementary particles.

In the case of superconductivity, the phase drop across the tunnel barrier between
two superconductors can be interpreted as such a collective variable. First evidence
for the coherent dynamics of this macroscopic phase variable has been given by the
measurement of quantum tunneling in a current biased Josephson junction [Voss81,
Devoret85, Martinis87], which initiated the development of tunnel barrier based
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1 Introduction: Probing quantum physics in superconducting circuits

artificial atoms [Nakamura97, Bouchiat98, Nakamura99, Mooij99, Vion02] and their
controlled coupling to microwave radiation in superconducting circuits [Wallraff04,
Chiorescu04, Schoelkopf08].

One of the central motivations for this research field is the realization of quantum
information processing platforms. The strong connection between information theory
and quantum physics fascinates researchers since the 1980’s [Feynman82, Deutsch85,
Shor94, Grover96, Chuang98] and since then drives scientists to realize physical
implementations, which bring the control and processing of quantum information into
reality. Besides successful approaches with optical photons [O’Brien09], nuclear spins
[Vandersypen04], trapped ions [Blatt08], ultracold atoms in optical lattices [Bloch08]
and quantum dots [Hanson08], the search for appropriate solid state systems is actively
pursued. In this context, Josephson junction based electrical circuits offer flexible
conditions in the design and fabrication of engineered quantum systems. Because of
their natural coupling to microwave radiation they also benefit from a powerful signal
processing toolbox in this frequency range.

1.2 A decade of quantum optics in superconducting
circuits

During the last ten years significant progress has been made with superconducting
circuits in exploring microwave quantum optics, in realizing quantum algorithms, and
by more recent attempts to simulate many-particle physics. All these experiments
crucially rely on the possibility to create and measure coherent superposition states
and entanglement between different macroscopic degrees of freedom. Based on the
ground breaking experiment by Nakamura et al. [Nakamura99] and related proposals
[Buisson01, Makhlin01, Marquardt01, Al-Saidi01, Plastina03, Yang03, Blais04] how
to realize cavity QED experiments [Haroche89, Mabuchi02, Miller05, Walther06] on
superconducting chips, an important achievement was made in 2004 by demonstrating
the strong coupling of a superconducting qubit to a coplanar microwave resonator
[Wallraff04]. In the years after, similar devices were intensely characterized exper-
imentally in the resonant [Deppe08, Fink08, Bishop09a] as well as the dispersive
regime [Schuster05, Schuster07, Fragner08, Johnson10]. They repeatedly confirmed
that Josephson junction based electrical circuits can be well represented as single
artificial atoms – often approximated as two-level systems - which interact strongly
with photons in a cavity.

The implementation of quantum algorithms in superconducting circuits was pushed
forward by the realization of cavity mediated inter-qubit coupling [Steffen06, Majer07,
Sillanpää07]. The development of efficient control and state tomography techniques
[Filipp09] allowed for preparing and characterizing entanglement of up to three qubits
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1.3 Outline of the thesis: A guide to the reader

on a chip [DiCarlo10]. Soon after, both the concatenation of single and two-qubit
gates [DiCarlo09] as well as collective interactions [Mlynek12] have been investigated
to realize basic quantum algorithms [Mariantoni11b, Fedorov12, Lucero12] and error
correction [Reed12]. At the the same time the quantum nature of resonator fields
were explored, by generating arbitrary superposition states of a single resonator mode
[Hofheinz08, Hofheinz09] and entanglement between two different modes [Wang11,
Nguyen12]. The experimental progress also inspired researchers to constantly improve
the coherence times over the years by modifying the qubit and circuit topologies
[Koch07, Paik11, Rigetti12].

A major difference between superconducting circuits and most other quantum
control platforms is their natural coupling to microwave instead of optical pho-
tons. Although microwave frequency quantum fields confined in cavities have
earlier been generated and characterized with remarkable control using Rydberg
atoms [Haroche06, Deleglise08], until recently only a few experiments existed which
investigated propagating microwave fields. This is partly due to the difficulty in
detecting single microwave photons, which have a 105 times smaller energy com-
pared to their optical counterparts. It thus is challenging to build detectors with
high quantum efficiency in this frequency range and to develop methods for charac-
terizing quantum microwave radiation in the presence of significant detector noise
[Menzel10, Bozyigit11, Eichler11b, Lang11, Eichler12a, Menzel12]. The possibility
to analyze photon statistics and the coherence of microwaves is not only of par-
ticular interest in the context of quantum communication and networking with su-
perconducting circuits, but offers a powerful tool to study various kinds of devices
[Frey12, Puebla-Hellmann12], which can emit radiation in the microwave frequency
range.

While progress has also been made in the development of microwave photon
counters [Chen11, Romero09, Peropadre11a, Poudel12], the research of efficient field
detection was mainly focused on linear amplifiers. Following the ideas by Yurke et al.
from the 1980’s [Yurke88, Yurke06], a revival of parametric amplifier technologies
took place [Siddiqi04, Castellanos-Beltran08, Yamamoto08, Tholén09, Bergeal10a,
Eichler11a, Hatridge11, Ho Eom12], which recently turned into application for the
real-time monitoring of superconducting qubits [Vijay11] in feedback experiments
[Vijay12, Ristè12a], as well as the measurement of microwave photon statistics and
quantum correlations [Mallet11, Eichler12b].

1.3 Outline of the thesis: A guide to the reader

In this thesis, I demonstrate the use of linear detection schemes for measuring photon
statistics and coherences of various types of quantum microwave fields and their
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1 Introduction: Probing quantum physics in superconducting circuits

entanglement correlations with a superconducting qubit. I discuss the experimental
state tomography of single itinerant microwave photons in the presence of significant
amplifier noise [Eichler11b]. For this purpose, we have developed general quantum
state reconstruction methods, which are based on the measurement of field quadrature
histograms and take the effect of limited detection efficiency into account [Eichler12a].
I also report the experimental realization of a degenerate parametric amplifier and
demonstrate its near quantum limited operation in a phase-preserving mode, by mea-
suring quantum correlations between the emitted signal and idler frequency noise
[Eichler11a]. These correlations provide a major resource for the realization of con-
tinuous variable quantum information protocols. Finally, I report the first observation
of entanglement between a superconducting qubit and single propagating microwave
photons. Using low noise parametric amplification, we are able to resolve all relevant
quantum correlations between the propagating field and the superconducting qubit to
demonstrate entanglement with high fidelity [Eichler12b].

In order to give the present thesis an additional benefit over the underlying research
articles, I aim for discussing the different research topics in a more general context.
I have included the relevant introductory elements and cover the material in a self-
contained way, to make it accessible also to non-expert readers. On the other hand,
detailed background information about the technical and theoretical aspects is provided
for interested researchers.

A brief introduction to superconducting circuit elements including the Cooper pair
box and the transmission line resonator is presented in Chapter 2. I keep the derivations
short but motivate the specific model descriptions from first principles. Furthermore,
the concept of open quantum systems is discussed in the context of electrical circuits.
I review only those elements which are relevant for the following discussion instead
of giving a general introduction to the field. Those readers which are familiar with
superconducting circuits can skip the introductory chapter without missing important
information necessary for understanding the following parts.

In Chapter 3, I describe the tomographic state reconstruction of microwave radiation
using linear detection. I explain the optical analogue of typical microwave detection
schemes and discuss the influence of added amplifier noise on the measurement
outcome. Measurements of photon statistics for an on-demand single photon source
are presented and compared with the statistics of classical coherent fields. I also
discuss more advanced reconstruction techniques including a maximum likelihood
approach, which takes the full measurement record into account. Finally, I discuss
two-channel detection schemes using microwave beamsplitters and demonstrate their
application in a two-photon interference experiment.

In order to improve the detection efficiency of our linear detection chain we have
developed a parametric amplifier which operates close to the quantum limit. The
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1.3 Outline of the thesis: A guide to the reader

goal of Chapter 4 is to establish the relation between design parameters of the device
and amplifier properties such as bandwidth, gain and dynamic range. This chapter
is particularly interesting for readers which search for a guide to build and operate a
Josephson parametric amplifier. In addition to this presentation of technically relevant
material, I discuss experiments in which we have measured squeezing correlations
between signal and idler photons generated out of vacuum fluctuations. The quantum
origin of these correlations shows that the device operates close to the quantum limit.

In Chapter 5, the on-demand generation and detection of entanglement between a
superconducting qubit and single itinerant photons is discussed. The measurement of
all relevant quantum correlations is efficiently realized by using a parametric amplifier.
In addition to the preparation of single-photon entangled states, I present a scheme
to prepare two-photon states on demand by making use of the third energy level of
the superconducting artificial atom. In the context of qubit-field entanglement, we
have also theoretically investigated quantum correlations between the output field of a
coherently driven cavity and a dispersively coupled qubit. Our results give new insight
into the measurement process during dispersive readout schemes. Finally, I discuss
prospects of the presented work in Chapter 6.

5





Chapter 2
Concepts of circuit quantum
electrodynamics

2.1 Dissipationless nonlinear electronic circuits

Microscale quantum devices provide a high level of flexibility in the design of sys-
tem parameters and are thus promising to realize platforms for the study of control,
manipulation and measurement of quantum correlations. Knowledge about general
requirements on appropriately engineered systems helps to understand key aspects and
advantages of superconducting circuits, as well as challenges in this field of research.

2.1.1 Requirements for the implementation of quantum physics in
engineered systems

Here, I formulate a set of requirements which has to be obeyed by a physical system
to enable quantum control experiments. They are related to the DiVincenzo criteria
for quantum computation [Di Vincenzo95] but less stringent, since we allow for a
wider range of experimental purposes. Note that alternative sets of criteria may be
formulated as well. However, the following requirements are the important ones in
the context of superconducting circuits and cavity QED systems in general.

For a successful implementation of quantum-mechanical operations it is, at first,
necessary to initialize the system in a well defined state with no thermally induced
statistical uncertainty. Formally, this is equivalent to the preparation of a pure state
of the system, which guarantees that all statistical properties of the measurement
outcomes are of purely quantum mechanical origin. Typically, this pure initial state
is the ground state, which is reached by cooling the relevant degrees of freedom

7



2 Concepts of circuit quantum electrodynamics

far below the characteristic temperature scale associated with the typical energy
level separation in the system. Cooling can either be realized with refrigerative
techniques reaching temperatures down to T . 10 mK [Pobell06] or with system-
specific active cooling methods such as sideband cooling [Wineland79, Schliesser08,
Park09, Leibrandt09, Teufel11]. Alternatively, initializing of the system in a pure state
can be achieved by performing a high fidelity quantum non-demolition measurement
which leaves the system in a well-known state determined by the measurement result
[Braginski96, Ristè12c].

A second condition is the presence of a quantum nonlinearity which makes the
energy levels anharmonic without opening a channel for dissipation. This enables the
individual addressing of transitions between selected energy levels. If in contrast, the
system is purely linear, a classical control signal applied to the input of the system
always leads to a classical output, independent of what has happened in between.
Prominent examples for intrinsically anharmonic systems are spin half particles in a
magnetic field, which have only one accessible level above the ground state, and single
atoms. For this reason, also engineered macroscopic objects with an anharmonic level
spectrum are often called ’artificial atoms’.

Once an anharmonic system is under control, it needs to obey coherent dynamics.
On the one hand, this requires that energy relaxation times are longer than the time
necessary for performing an experimental sequence, i.e. the time between system
preparation and detection. On the other hand, all relevant energy levels have to be
stable in time such that the dynamical phases acquired during time-evolution do not
randomize. Understanding the origins of decoherence and its suppression is one of the
major challenges in the development of quantum systems built of microscale devices
[Wellstood04, Ithier05, DiVincenzo06, Koch07, Lenander11, Anton12, Catelani12].
Note that dissipation – if engineered properly – can also be useful for the generation
of entanglement or the stabilization of arbitrary pure states [Krauter11, Murch12].

Finally, the realization of quantum control experiments requires the efficient cou-
pling of the system to the classical world. It needs precise and individual control
knobs to manipulate the physical objects with classical control fields. Furthermore,
since the measurement process and its backaction play an important role in quantum
mechanics [Wiseman10], we need efficient detectors – transforming the quantum into
a classical information – with well-characterized properties .

All these criteria can be satisfied in electrical circuits at microwave frequencies when
cooled down to millikelvin temperatures. As discussed below, the crucial element
for making these systems nonlinear is the Josephson junction. The high degree of
flexibility in designing electrical circuits on a chip in combination with advanced
signal generation and processing technologies at microwave frequencies have made
superconducting circuits one of the most rapidly advancing systems in experimental

8



2.1 Dissipationless nonlinear electronic circuits

quantum science.

2.1.2 Lumped elements and collective degrees of freedom

A useful concept for designing and modeling engineered quantum systems are col-
lective degrees of freedom, which allow for the description of the dynamics of a
macroscopic number of particles by a single variable. It not only reduces the descrip-
tion of engineered solid state systems to single or few degree of freedom problems but
also simplifies the intuitive assembly of different subsystems to form more compli-
cated structures. As a consequence, the effective device properties can be understood
without considering the full microscopic model each time a new system is engineered.
Here, I discuss this concept of system modelling for electrical circuitry, which plays a
central role in circuit QED. Interestingly, it turns out that in many cases it is possible
to go directly from a lumped circuit model to the relevant Schrödinger equation for
the collective degrees of freedom [Devoret97, Nigg12]. There is, however, a vivid
discussion if this procedure is still valid in a limit where many-body effects become
relevant [Nataf10, Viehmann11].

We consider the system shown in Figure 2.1(a), which consists of two metallic
islands connected by a wire. For simplicity, we assume that there is no resistive loss in
the metal1 and that the surrounding dielectric medium is the vacuum. From Maxwell’s
first equation ∇ · E = ρ/ε0 it follows that a net charge difference 2Q between the two
objects leads to an electrical field E. If we prohibit, for the moment, a flow from
one to the other island the charges on each side will arrange on the surface such
that the metal stays free of electrical field inside. In this static situation, the energy
required for moving one charge through the electrical field from one to the other side
is path-independent and therefore it is convenient to define the position independent
voltage V as this energy per unit charge. The voltage V is proportional to the charge
difference 2Q between the two islands V = Q/C, where C is the constant capacitance
between the islands, which only depends on the shape and geometrical arrangement
of the two objects as well as the dielectric medium in between. In this static situation
the total energy stored in the electrical field is thus given by Eel = Q2/2C.

The time required for relaxing into a quasi-static field configuration for an object of
characteristic size d is typically on the order of τ ∼ d/c where c is the speed of light
in the relevant dielectric medium. If τ is much smaller than the timescale on which
the total charge Q(t) on the object changes, the spatial charge configuration as well as
the electrical field lines can follow quasi-instantaneously. If this is the case, the finite
extent of the object is fully captured by the single parameter C. The object can thus be
represented by a pointlike – or lumped – effective element. As long as Q(t) changes

1The modeling of damping is discussed in Section 2.2.3.
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2 Concepts of circuit quantum electrodynamics
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Figure 2.1: (a) Two metallic islands connected by a conducting wire. In a lumped element
regime the total energy in the electric field E and the magnetic field B only depends on the
total charge Q and the magnetic flux variable Φ. (b) Equivalent circuit model with effective
inductance L and capacitance C. (c) Schematic of a Josephson junction. Two superconducting
(SC) islands are separated by a thin barrier of insulating material (blue), such that their
superconducting wave functions overlap and Cooper pairs (green) can tunnel from one to the
other island. (d) Effective circuit model of the Josephson junction. The energy associated
with Cooper pair tunneling is equivalent to a magnetic energy stored in a nonlinear inductor,
which is represented by a cross in circuit schematics. The electrostatic energy between the
two islands is represented by the capacitive element CJ .

on timescales much larger than τ we have Eel(t) = Q(t)2/2C at all times. Note that for
typical metals the inverse plasma frequency of the electron gas density is also very
small such that waves of the electron gas density do not get excited at the frequencies
we are interested in [Girvin11].

If charge carriers can flow from one to the other object through the wire, the
associated current density j produces a magnetic field B according to ∇×B = µ0j (see
Figure 2.1). Assuming that the wire is short compared to the characteristic wavelength
of the system, the current I is constant along the wire and given by the change of
charges on the islands I = Q̇. Similarly to the electrical field case, there is a constant
proportionality between the square of the current and the energy stored in the magnetic
field Emag = LQ̇2/2. The inductance L is an effective parameter which is constant and
determined by the geometry of the wire and the surrounding magnetic susceptibility.
The total energy Etot = Q2/2C + LQ̇2/2 stored in the magnetic and electric fields
only depends on the dynamics of the single charge variable Q, which can therefore
be interpreted as a collective variable representing the effective dynamics of all the
involved charge carriers. Note that the kinetic energy contribution of the moving
charge carriers is typically very small compared to the energy stored in the magnetic
field and is therefore negligible. However, for thin superconducting wires of nanoscale

10



2.1 Dissipationless nonlinear electronic circuits

size this additional kinetic energy becomes relevant and has to be accounted for by
introducing the effective kinetic inductance [Yoshida92].

Since the expression for the total energy Etot in terms of the variable Q is formally
equivalent to that of an harmonic oscillator with resonance frequency ω = 1/

√
LC,

the equivalent Hamilton function turns out to be

H = Φ2/2L + Q2/2C (2.1)

with the conjugate flux variable Φ = LQ̇. In the quantum regime, charge and mag-
netic flux variable have to be interpreted as non-commuting operators [Φ,Q] = ~/i
[Yurke84, Devoret97] and it is convenient to write the Hamiltonian as H = ~ω(a†a+ 1

2 ),
where

a ≡ i
Φ

√
2L~ω

+
Q

√
2C~ω

and a† = −i
Φ

√
2L~ω

+
Q

√
2C~ω

(2.2)

are operators which annihilate and create the fundamental excitations in the system.
Due to the underlying electromagnetic field they are photons with frequency ω.

As mentioned above, this quantization method, which starts from a lumped element
circuit model and treats charge Q and magnetic flux Φ as conjugate non-commuting
variables can be generalized to systems with more degrees of freedom as well [Yurke84,
Devoret97]. An example, for this general procedure is discussed in Section 4.3 in the
context of parametric amplifiers. Note, that in the above single mode description of the
field we have neglected the emission of electromagnetic radiation into the surrounding
environment. I discuss this important point later in Section 2.2.3 in the context of
open transmission lines.

2.1.3 The Josephson junction and the Cooper pair box

In a system which is solely composed of inductive and capacitive elements the total
Hamiltonian can always be written as a sum of harmonic oscillators H =

∑
i ~ωi(a

†

i ai +

1/2), each representing one of its normal modes, see for example Ref. [Nigg12].
Consequently, the response to a classical control signal is purely linear and can
generally be described within a classical picture. In other words, it is possible to
replace the operators ai by complex numbers αi [Glauber63] and describe the dynamics
based on classical equations of motion. Note that in this regime, the presence of
vacuum fluctuations only affects the temperature dependence of the Johnson noise
power, which in the limit of kBT/~ω→ 0 saturates at the vacuum noise level instead
of going to zero [Devoret97, Mariantoni10].

In order to experimentally study the quantum regime of electrical circuits, it is
essential to have a nonlinear element in the system which causes effective photon-
photon interactions. In conventional cavity QED and quantum optics systems, this

11



2 Concepts of circuit quantum electrodynamics

nonlinearity is typically realized either as a medium with nonlinear refractive index
[Lee11] or as an ensemble of atoms interacting with the intra-cavity radiation field
[Thompson92, Walther06]. Both break the linearity due to their intrinsically anhar-
monic level structure. For on-chip electrical circuits the most successful nonlinear
element has so far been the Josephson junction [Josephson62, Tinkham96]. Com-
pared to other solid state elements, it is not only advantageous since it features flexible
design and fabrication parameters but moreover due to its ideally lossless behavior.
All experiments presented in this thesis rely on the Josephson junction as a nonlinear
element. As we will see in the following chapters, the wide range of accessible junc-
tion parameters allows for the realization of system Hamiltonians with very different
properties.

The Josephson junction consists of two superconducting islands, which are sep-
arated by a thin insulating layer, see Figure 2.1(c). If both islands are in the super-
conducting groundstate all degrees of freedom are frozen out by the energy gap of
the superconductor, except the tunneling of Cooper pairs through the barrier. The
energy change associated with a tunnel process is captured by the following hopping
Hamiltonian [Büttiker87, Makhlin01]

Htunnel = −
EJ

2

∞∑
N=−∞

|N〉〈N + 1| + |N + 1〉〈N |, (2.3)

where {|N〉} label the charge basis states with N tunneled Cooper pairs relative to
equilibrium. The energy EJ is the Josephson energy which depends on the tunnel
barrier properties and is a measure of the energy associated with a tunnel process of a
Cooper pair from one to the other island. The discreteness of the number of Cooper
pairs is implicitly taken into account in this description. The tunneling Hamiltonian is
diagonal in the phase basis |φ〉 ∝

∑
N eiNφ|N〉 with resulting eigenenergies

Htunnel|φ〉 = −EJ cos φ|φ〉. (2.4)

The phase φ has the compact property |φ〉 = |φ + 2π〉 and is identical to the phase
difference between the two superconducting wavefunctions [Girvin11].

In addition to the tunneling energy, a finite capacitance CJ between the two super-
conducting islands gives rise to an electrostatic energy Q2/2CJ , where Q is the charge
operator Q = 2e

∑
N |N〉〈N |. The total Hamiltonian, including both the tunneling and

the electrostatic energy, is thus given by

H =
Q2

2CJ
− EJ cos φ (2.5)

Comparing this Hamiltonian with the one for the LC circuit in Eq. (2.1) we find that

12



2.2 Relevant circuit QED building blocks

the electrostatic terms are equal but the magnetic energy Φ2/2L is replaced by the
tunneling energy −EJ cos φ. It is thus natural to interpret the phase φ as a magnetic
flux in units of the reduced magnetic flux quantum ϕ0 = ~/2e. The essential difference
between the tunneling energy and a magnetic energy contribution is the non-quadratic
dependence on φ. This leads to an anharmonic level spectrum, which is exactly what
we were aiming for. Due to the analogy between the phase variable φ and the magnetic
flux Φ we can treat the Josephson tunnel barrier as a nonlinear inductor, which in a
circuit diagram is typically represented by a cross as illustrated in Figure 2.1(d). Note
that the equivalence between phase φ and magnetic flux is also reflected in the second
Josephson equation V = ϕ0φ̇ [Tinkham96], which states that the time derivative of
the phase φ̇ is proportional to the voltage drop V across the barrier, similarly as for a
magnetic flux variable.

2.2 Relevant circuit QED building blocks

Superconducting tunnel barriers in combination with inductive and capacitive ele-
ments form the fundamental toolbox for designing on-chip quantum systems with
characteristic frequencies in the microwave domain. The wide range of experimentally
accessible Josephson energies (EJ/h from GHz to THz range in our lab) allows us to
form objects with different characteristic properties ranging from effective two-level
system [Devoret04] to oscillators with a weak nonlinearity [Castellanos-Beltran07].
In this section, I introduce the main building blocks of the devices used in our exper-
iments. I discuss the transmon qubit, the transmission line resonator, as well as the
modeling of resistive elements and open transmission lines.

2.2.1 The transmon qubit

The Josephson junction Hamiltonian, as introduced in Eq. (2.5), describes in itself
a non-linear oscillator. However, the transition frequencies of the Cooper pair box
are very sensitive to non-integer offset charges ng between tunneled Cooper pairs on
the two islands. If such offset charges are induced by environmental stray fields or
tunneled quasi-particles, this leads to unwanted dephasing. The offset charge can also
be controlled using an external voltage bias. In the presence of offset charges, the
Cooper pair box Hamiltonian becomes [Büttiker87, Makhlin01, Koch07]

HCPB = 4EC(N − ng)2 − EJ cos φ, (2.6)

where N is the number operator of tunneled Cooper pairs and ng is the offset charge in
units of 2e. Furthermore, we have expressed the total box capacitance CJ in terms of
the charging energy EC = e2/2CJ . If we interpret N and φ analogues to momentum
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Figure 2.2: (a) First two transition energies of the transmon qubit as a function of offset charge
ng for the ratios EJ/EC = 5 (red) and EJ/EC = 40 (blue). (b) False color micrograph of a
transmon qubit. The two superconducting aluminium islands (blue) and (red) are evaporated
on a sapphire substrate (black). The Josephson junctions of the SQUID loop (enlarged picture)
connect the two islands via a thin barrier of aluminium oxide. The flux control line allows for
tuning the transition energies. For the shown device the charging energy is EC = 350 MHz.
(c) Equivalent circuit diagram of the transmon. The additional voltage source Vg models all
controlled and uncontrolled sources of offset charges ng.

and position variables, ng plays the role of an additional vector potential. The Cooper
pair box Hamiltonian can be diagonalized analytically, e.g. [Koch07], where we label
the eigenstates as {|g〉, |e〉, | f 〉, ...} and the associated nondegenerate transition energies
as {~ωge, ~ωe f , ...}.

For a typical Cooper pair box the ratio between Josephson and charging energy
EJ/EC is on the order of 1 and in this regime the transition energies strongly depend
on the gate charge ng. This unwanted energy dispersion due to offset charges can be
exponentially suppressed by increasing the ratio EJ/EC [Koch07, Schreier08], see
Figure 2.2(a). Experimentally this is achieved by shunting the Josephson junction
with an additional large capacitor C0 such that the total charging energy decreases to
EC = e2/2(CJ + C0).2 The increased EJ/EC ratio not only reduces the sensitivity to
charge noise but also the anharmonicity α ≡ ωe f −ωge. However, the charge dispersion
decreases exponentially with ∼ e−EJ/EC , while the anharmonicity scales approximately
linearly in EC . It is thus possible to keep a sufficient amount of anharmonicity for
using the device as an effective two-level system and at the same time suppress the
charge dispersion to a degree where it is not limiting the dephasing time anymore.
A detailed discussion about the capacitively shunted Cooper pair box including an
analysis of the complete capacitance network and noise properties can be found in
Ref. [Koch07].

An optical micrograph of a capacitively shunted Cooper pair box – called transmon

2In practice, the effective charging energy has to be determined from the full capacitive network as
described in Refs. [Koch07, Burkhard12].
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2.2 Relevant circuit QED building blocks

– is shown in Figure 2.2(b) with an equivalent circuit model in Figure 2.2(c). The
interdigitated capacitor on the left forms the large shunting capacitance C0. Both
islands are connected with a pair of Josephson junctions in a superconducting quantum
interference device (SQUID) configuration. For our purposes it is sufficient to consider
the SQUID loop as an effective single Josephson junction with tunable Josephson
energy. If both junction have the same Josephson energy EJ/2, the total effective
Josephson energy EJ,tot = EJ | cos(Φext/ϕ0)| can be varied by changing the magnetic
flux Φext enclosed by the SQUID loop. Since the transition energy between the ground
and first excited state ωge is given by ~ωge ≈

√
8ECEJ,tot − EC , the tunable Josephson

energy thus results in a tunable qubit frequency.
The tunability is desirable for two reasons: First, the Josephson energy of a tunnel

barrier depends exponentially on the barrier thickness, which underlies small variations
during the fabrication process. Therefore, even though the fabricated Josephson energy
might slightly differ from the designed one, the tunability allows for biasing the qubit
at a desired frequency. Second, the magnetic flux through the loop can be varied on
nanosecond timescales using on-chip fluxlines [Majer07]. This fast tuning enables
us to turn on and off the effective interaction with other circuit components for well-
defined times. A potential drawback of this tunability is that the qubit frequency is
sensitive to magnetic flux noise, especially far away from the ’sweet spot’ [Vion02] at
Φext = 0, where the gradient |∂ωge/∂Φext| is large.

The capacitive shunting of the Cooper pair box is only one possible modification
to achieve noise resilient qubits. Various other superconducting devices have been
fabricated based on current biased [Martinis02] or inductively shunted Josephson
junctions [Friedman00, Chiorescu03, Manucharyan09], which can be operated with
different control, coupling and readout mechanisms. However, the fundamental
element of all these devices is always the Josephson junction with its anharmonic
cos(φ) - potential.

2.2.2 Transmission line resonator

A second building block of circuit QED devices are harmonic oscillators, which play
the role of cavities in conventional cavity QED systems. They can be realized either
as lumped element LC circuits [Geerlings12], as 3D cavities [Paik11, Rigetti12] or as
distributed coplanar waveguide resonators [Wallraff04]. In our experiments we use
the latter ones, which I therefore introduce in this section.

The coplanar waveguide resonator can be understood as the on-chip version of a
finite length coaxial cable with two open ends. The inner conductor of this transmission
line is formed by a thin stripe of metal with length d, while the outer conductor is
realized as a large ground plane, see Figure 2.3a. In order to minimize resistive and
dielectric losses, both parts are made of superconducting niobium evaporated on a
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2 Concepts of circuit quantum electrodynamics

mono-crystalline sapphire substrate. Since its characteristic size d turns out to be
comparable to the wavelengths of resonating modes, we have to treat the object as a
distributed element, in which the voltage V(x) with respect to ground and the current
I(x) flowing through the inner conductor are position dependent. The magnetic flux
variable Φ thus becomes a continuous field, Φ → Φ(x), which is related to local
voltage and current by [Yurke84]

V(x) = Φ̇(x) , I(x) =
1
l
∂xΦ(x). (2.7)

Here, we have introduced l as the self-inductance per unit length of the line. It is
proportional to the vacuum permeability l = gµ0 in non-magnetic insulators. The
dimensionless prefactor g = g(s,w) is a function of the geometry parameters s and w
of the line, compare Figure 2.3(b). For the specific parameters used in our devices the
geometry factor is g(w = 10 µm, s = 4.5 µm) = 0.318 [Göppl08, Simons01].

To derive the Hamiltonian of the transmission line resonator we start from the total
Lagrange function L = T −U and perform a Legendre transformation. In terms of the
magnetic flux field Φ(x), the kinetic part T is given by the electric energy while the
potential U is given by the magnetic energy. Integrating over the whole field results in
the Lagrange function

L =

∫ d

0
dx

{ c
2

(Φ̇(x))2 −
1
2l

(∂xΦ(x))2
}
, (2.8)

where c is the capacitance per unit length of the line. It is proportional to the effective
permittivity c = g−1εeffε0, where the effective relative permittivity is found to be
εeff ≈ 5.5 for sapphire substrates of thickness h = 500 µm.

Evaluating the Euler-Lagrange equation ∂t(δL/δΦ̇) − δL/δΦ = 0 results in the
wave equation

v2∂2
xΦ(x) − Φ̈(x) = 0, (2.9)

where the wave velocity is given by v = 1/
√

lc = 1/
√
εeffε0µ0. Note that the geometry

factor g(s,w) drops out in this expression such that the wave velocity v and likewise
the resulting resonance frequencies are insensitive to small changes in the geometry
parameters s and w. Variations in the photo-lithographical fabrication procedure
therefore leave the resonance frequency unaffected, which makes their design and
fabrication reliable and reproducible.

Taking into account the boundary condition of vanishing currents at the two open
ends allows us to write the solution to the wave equation – up to a constant offset – in
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Figure 2.3: (a) Schematic of a coplanar transmission line resonator. A strip of superconducting
niobium with length d is separated by a gap s from a ground plane of the same material (blue).
Both are evaporated onto a mono-crystalline sapphire substrate (gray). The resonator is coupled
with controlled strength to the electromagnetic environment (red) for applying classical drive
field and for detection. The length d for typical transmission line resonators in the GHz range
is a few millimeters. (b) Vertical cross section through a coplanar transmission line. The
geometric factor g is determined by the width w of the inner conductor and its distance s from
the ground plane. The thickness h of the dielectric substrate influences the effective dielectric
constant εeff . (c) Effective circuit model of the transmission line resonator in the normal mode
representation, neglecting the coupling to the electromagnetic environment.

terms of its normal modes

Φ(x) = r
∞∑

n=1

φn cos(knx), (2.10)

with wave vectors kn = nπ/d. The dimensionless scaling factor r will be specified
below, by requiring that the resonance modes have the correct impedance. In terms of
the normal mode flux variables φn the Lagrange function is diagonal

L =
1
2

∑
n

Cφ̇2
n −

1
Ln
φ2

n with C = r2 cd
2
, Ln =

2ld
r2π2n2 . (2.11)

Introducing the charge variable qn = δL/δφ̇n as the conjugate to the magnetic flux
variable φn results in the Hamiltonian

H =
1
2

∞∑
n=1

(
q2

n

C
+
φ2

n

Ln

)
. (2.12)

Comparing this Hamiltonian with the one in Eq. (2.1) we see that it describes a sum
of independent harmonic oscillators with resonance frequencies ωn = 1/

√
LnC =
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2 Concepts of circuit quantum electrodynamics

πn/d
√

lc. In the quantum regime, the conjugate magnetic flux and charge are non-
commuting operators [φn, qm] = δnm~/i and we can write the Hamiltonian in the
familiar form

H =

∞∑
n=1

~ωn(a†nan +
1
2

) with an ≡ φn
i

√
2Ln~ωn

+ qn
1

√
2C~ωn

. (2.13)

with field operators an. Although the resulting resonance frequencies ωn are indepen-
dent of r, this scaling factor becomes relevant when calculating the coupling rates to
an environment (see next section). For this purpose the effective impedances√

Ln

C
=

2
r2πn

√
l
c
, (2.14)

of the resonating modes have to be known, which obviously depend on r. We can fix r
by comparing the admittance Yn = −iωC + i/ωLn associated with each resonant mode
with the admittance YTL = −i tan(πω/ω1)/Z0 of a transmission line of length d and
impedance Z0 =

√
l/c [Pozar93]. This admittance is required to be equal to Yn in the

vicinity of a resonance. Calculating the derivatives with respect to ω and requiring
that they are equal ∂ωYn|ω=ωn � ∂ωYTL|ω=ωn leads to r = 1. In summary, we have
found that the transmission line resonator can be expressed as a sum of independent
LC oscillators with effective capacitance C = cd/2 and inductances Ln = 2ld/π2n2.
An equivalent circuit representation is shown in Figure 2.3(c).

2.2.3 Coupling to the electromagnetic environment

Until now we have assumed that the LC oscillators and the Cooper pair box are
completely decoupled from their environment. In practice, however, we have to apply
control signals for manipulating the system state and want to extract information
from the system. Both require a connection to an electromagnetic environment,
see coupling port in Figure 2.3(a). Furthermore, sources of loss and decoherence
originate from the coupling to uncontrolled environmental degrees of freedom, such
as spurious electromagnetic modes, as well as acoustic and electronic modes in the
sample material. To capture these aspects it is necessary to extend the Hamiltonian
description by including the environment into the models. This is of particular
relevance for the presented experiments, in which the transformation of localized into
propagating fields is studied.

For simplicity, we consider only a single mode of the above transmission line
resonator a ≡ an with associated Hamiltonian Hsys, which is capacitively coupled to a
bath of environmental modes. Typically, these modes are realized as a transmission
line of infinite length, as schematically shown in Figure 2.4(a). They could, however,
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2.2 Relevant circuit QED building blocks

also be of completely different physical origin.
We can look at this situation from three different perspectives: First, we can have

the viewpoint of an external observer who sends in a signal (quantum or classical) to
extract information from the system by measuring the reflected output signal. This
approach is captured by input-output-theory [Gardiner85]. Second, we can have the
perspective of the system itself and ask how its quantum mechanical time-evolution
is affected by the adjacent bath. This results in a master equation formulation of the
system dynamics [Walls94]. Third, we can treat the system in an electrical circuit
fashion [Pozar93], which is very useful when explicitly calculating decay rates. Instead
of providing a formal derivation of these concepts I will lay out the relation between
these approaches and discuss their practical relevance.

Input-Output Theory: Since the infinite length transmission line, shown in Fig-
ure 2.4(a), is equal to a transmission line resonator in the limit of d → ∞, its Hamilto-
nian is given by Hbath = ~

∫
ω

dωω b†ωbω, where we have dropped the constant vacuum
contribution 1/2 for convenience. Furthermore, the coupling capacitance Cκ leads to
a coupling Hamiltonian modeled by Hcoupl = ~

√
κ/2π

∫
ω

dω(b†ωa + bωa†) [Walls94].
The relation between the coupling capacitance Cκ and the coupling rate κ is derived
below. From the viewpoint of an external observer located at the end of the trans-
mission line it is natural to decompose the bath modes into input bin(t) and output
bout(t) modes which correspond to fields traveling towards or away from the system
and reaching it at time t (compare Figure 2.4(a) and see Refs. [Walls94, Gardiner85]
for a formal definition). While the input fields bin could be controlled by for example
an external drive field, the output modes bout describe the signal reflected from the
system. If we evaluate the Heisenberg equations of motion for the system and the
bath modes using the full Hamiltonian Hsys + Hbath + Hcoupl, we obtain the boundary
condition [Gardiner85, Walls94]

bout(t) =
√
κa(t) − bin(t) (2.15)

between incoming and outgoing field modes. As expected, the output signal has not
only a contribution from the input field, but also depends on the system field a. The
equation of motion for the system field is given [Gardiner85, Walls94]

ȧ(t) = −
i
~

[a,Hsys] −
κ

2
a(t) +

√
κbin(t). (2.16)

The first term on the right hand side describes the unitary evolution of the resonator,
which is independent of κ. The second term is a damping term, which leads to a decay
of the resonator field. The last term acts as an external driving force. Thus, Eq. (2.16)
is equivalent to the equation of motion for a driven and damped oscillator. Note
that the input modes at different times are independent and satisfy the commutation
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Figure 2.4: (a) Schematic of a single LC oscillator (system) capacitively coupled to the
electromagnetic environment (bath) realized as a transmission line of infinite length. (b) The
transmission line acts as a perfect absorber (i.e. blackbody) to the system which in electrical
circuits is represented by a resistor with real impedance Z(ω) = R. (c) The circuit in (b) can
be mapped onto an effective parallel LCR circuit.

relation [bin(t), b†in(t′)] = δ(t − t′). Furthermore they carry at least the vacuum noise
to the resonator which will become important in the context of vacuum squeezing
(see Section 4.5). The input-output relations in Eq. (2.16) are of particular relevance
in the context of spectroscopic measurements, in which the averaged output field
〈bout〉 is measured while applying a classical drive field bin(t)→ βe−iωt. The measure-
ment of the resulting reflection coefficient r ≡ 〈bout〉/〈bin〉, and more generally the
scattering matrix for systems with multiple coupling ports, are an important tool for
characterizing superconducting circuit devices.

Master equation approach:
While the input-output approach results in a Heisenberg equation of motion for the

field operator, it is sometimes desirable to express the system dynamics in terms of
a density matrix ρ, since it also captures higher order field correlations. If the input
modes are all in thermal equilibrium characterized by 〈bin(t)〉 = 0 and 〈b†in(t)bin(t′)〉 =

Nδ(t − t′) with thermal occupation number N. The bath has two distinct effects on the
system. First, it acts as a channel for decay into the transmission line and second, it
randomly excites the system if the bath is at non-zero temperature. From the viewpoint
of the system the bath presents an ideal blackbody in the sense that all radiation leaking
into the bath will never be reflected back but is perfectly absorbed. An extension of the
Schrödinger equation for ρ can be found, which accounts for these two effects but is
otherwise independent of the bath modes. It results in the master equation [Walls94]

ρ̇ =
i
~

[ρ,Hsys] + (N̄ + 1)
κ

2
(2aρa† − a†aρ − ρa†a)︸                                    ︷︷                                    ︸

decay

+ N̄
κ

2
(2a†ρa − aa†ρ − ρaa†),︸                             ︷︷                             ︸

spontaneous excitation
(2.17)

where all modes of the bath are traced out. The first term on the right hand side of
Eq. (2.17) expresses the unitary evolution of the density matrix and the last two terms
account for the average effect of spontaneous decay and excitation by appropriate
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Lindblad terms [Lindblad76]. Note that the two last terms in Eq. (2.16) describe the
same two effects, as long as the input modes bin(t) carry thermal noise. The derivation
of the master equation is based on the Markov assumption [Gardiner91] that the input
modes bin(t) are independent of the history of the resonator field a. Equivalently, one
can say that the correlation time between system and bath is zero. The specific form
of the Lindblad terms in Eq. (2.17) is related to the form of the coupling Hamiltonian
Hcoupl. If the bath couples to the photon number operator n = a†a instead of the field
operator a this leads to Lindblad terms of the type 1

2γφ(2nρn − n2ρ − ρn2), which
describe pure dephasing [Gardiner91].

Damping in electrical circuits: From the viewpoint of the system, the open trans-
mission line appears as an ideal one-dimensional blackbody, which on the one hand
perfectly absorbs all incident radiation and on the other hand carries thermal and
vacuum noise to the system. In an electrical circuit diagram such an ideal absorber –
or blackbody – can be represented by a resistor with impedance Z(ω) = R =

√
l/c,

which is frequency independent, real and equal to the ratio between inductance and
capacitance per unit length of the transmission line. In order to calculate the coupling
rate κ between system and bath it is convenient to represent the transmission line by
this resistive circuit element, as shown in Figure 2.4(b), and to use Kirchhoff’s and
Ohm’s laws to derive an appropriate equation of motion for the field stored in the
system. To this aim we map the circuit in Figure 2.4(b) onto an equivalent parallel
LCR circuit (see Figure 2.4(c)) with effective resistance R̃ and capacitance C̃ given by

C̃ =
Cκ

ω2C2
κR2 + 1

+ C ≈ Cκ + C

R̃ = R(1 +
1

ω2C2
κR2

) ≈
R

ω2C2
κR2

. (2.18)

Both approximations hold in the limit where the coupling to the transmission line Cκ

is small compared to the effective capacitance C of the resonator mode. Since the sum
of all currents through the elements has to vanish, the parallel LCR circuit is described
by the following equation of motion for the voltage V across the circuit elements

V̈C̃ +
V̇
R̃

+
V
Ln

= 0. (2.19)

This equation describes a damped harmonic oscillation with decay rate

κ =
1

C̃R̃
≈

C2
κR

C2Ln
(2.20)
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and resonance frequency

ω̃2
n =

1
C̃Ln

−
κ2

4
=

ω2
n

1 + Cκ/C
−
κ2

4
≈

ω2
n

1 + Cκ/C
. (2.21)

The larger the ratio Cκ/C is, the more the resonator is shifted towards lower fre-
quencies. The damping rate κ is the one which has already appeared in the master
equation and in the input-output relations. In order to include the additional frequency
shift into the Hamiltonian description we have to replace ωn by ω̃n in Eq. (2.13).
This calculation has shown that the basic methods of electrical circuitry are very
powerful for calculating decay rates and frequency shifts due to the coupling to an
electromagnetic environment and often more easily accessible than Fermi’s golden
rule based calculations. The same approach is in good approximation also applicable
to nonlinear circuits which include Josephson junctions. Eq. (2.20) can thus also
be used to calculate the capacitive coupling rates between a transmon qubit and its
adjacent flux and gate lines.

Finally, I would like to emphasize that the term ’dissipation’ in this context may
imply that the radiation is lost. However, in many situation the open transmission
line is connected to a detector or other systems and thus the intra-cavity field is not
damped in the conventional sense but only transformed into propagating transmission
line modes, compare Section 3.2.2.

2.3 Coupling a qubit to a resonator: The
Jaynes-Cummings model

In the previous section I have discussed the transmon as an artifical atom and the
transmission line resonator as a cavity-like object which allows for storing photons in
the microwave frequency range. If the transmon is positioned in the large electrical
field of the resonator, it can strongly interact with the photons stored in the resonator.
In this situation, the two systems can coherently exchange energy faster than their
respective decoherence rates, which is referred to as the strong coupling limit of cavity
QED [Haroche06]. In circuit QED large coupling rates are easily accessible, mainly
due to the large size of the participating objects and their planar geometry (compare
Figure 2.5(a)). Because of the correspondingly small mode volume the effective dipole
moment is highly enhanced [Devoret07]. This has first been realized experimentally in
2004 [Wallraff04] and enabled further investigations of interactions between photons
and atom-like systems in electrical circuits by adapting the concepts of cavity QED
physics, see schematic in Figure 2.5(b).

As for the individual objects, we can find the equivalent Hamilton function of the
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Figure 2.5: (a) False color optical micrograph of a typical circuit QED sample used in our
experiments. A single transmon with two individual control lines is coupled to a transmission
line resonator with one weakly coupled input port (orange) and one strongly coupled output
port (violet). (b) Schematic of an equivalent cavity QED system with a single atom coupled to
an optical cavity.

combined transmon-resonator circuit. The detailed procedure how to map the full
capacitive network3 to the Hamiltonian is described e.g. in Refs. [Blais04, Koch07,
Burkhard12]. For circuit designs similar to the one shown in Figure 2.5, the final
Hamiltonian can be written as [Blais04]

HJC = 4EC(N − ng)2 − EJ cos φ︸                          ︷︷                          ︸
=HCPB

+ ~ωresa†a︸    ︷︷    ︸
=Hres

+ 2βeVrms N(a + a†)︸                 ︷︷                 ︸
=Hint

(2.22)

where Vrms =
√
~ωres/2C is the voltage associated with the vacuum field of the

resonator with frequency ωres. The geometry dependent prefactor β < 1 takes into
account that only part of the voltage drop Vrms is across the Cooper pair box islands.
Since Vrms is fixed by the resonator properties, β is the important tuning parameter
when designing a specific coupling strength. In Eq. (2.22) we have assumed that only
one resonator mode a has a frequency close to the qubit transition frequency ωge and
all the other modes can be neglected. Note that these modes can have a significant
effect on the cavity-meditated qubit-qubit interaction [Filipp11]. This is, however, not
relevant for the work presented in this thesis, in which the single mode approximation
is valid for all experiments.

When the coupling energy is small compared to the qubit and resonator transition
frequencies, we can make a rotating wave approximation [Jaynes63] and express
the interaction part of the Hamiltonian in the eigenbasis {|i〉} of the Cooper pair box
Hamiltonian [Koch07]

Hint = −i~
∑

i=g,e, f ,...

gi |i + 1〉〈i| a − h.c., with gi ≡ 2βeVrms〈i|N |i + 1〉, (2.23)

3The required simulation of capacitances between all contributing superconducting islands is typically
realized with commercially available finite-element software, such as Ansoft Maxwell.
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where the matrix elements are approximately 〈i|N |i + 1〉 ≈
√

i + 1 (EJ/(32EC))1/4. For
later convenience, we have also introduced an additional factor −i, which corresponds
to a local phase rotation of the field operator a→ −ia. Interestingly, the expression
for the matrix elements implies that a decreasing charging energy leads to an increase
in coupling strength.

Eq. (2.23) describes the interaction part of a generalized Jaynes-Cummings Hamil-
tonian, which includes all higher transmon levels. Due to the anharmonicity of
transmon levels it is often possible to take only the first two lowest lying energy levels
{|g〉, {|e〉} into consideration and describe the transmon as an effective two-level system.
In this case the Hamiltonian reduces to the Jaynes-Cummings Hamiltonian for a qubit

Hint = −i~g (σ+ a − σ−a†), (2.24)

where we have set g ≡ gg and defined σ+ ≡ |e〉〈g| ≡ (σ−)†.

In the following, we describe the dynamics of this system in the two limiting
situations where the detuning ∆ = ωge − ωres between qubit and resonator frequency
is either large or small compared to the coupling strength.

2.3.1 Dispersive regime

As discussed above, the transition frequency of the qubit ωge and thus its detuning
∆ from the resonator can be varied by changing the magnetic flux enclosed by the
SQUID loop of the transmon. If the qubit is far detuned from the resonator ∆ � g,
the two systems are non-resonantly coupled and interact only dispersively without
direct energy exchange. In our experiments, this dispersive interaction is used for
reading out the qubit state by applying a coherent microwave field to the resonator
[Blais04, Wallraff05] and measuring its qubit state dependent response.

In order to derive the dispersive limit of the transmon-resonator coupling, it is
important to take the higher transmon levels into account, since they lead to additional
dispersive shifts even if they stay unpopulated. This is due to the relatively weak
anharmonicity of the transmon levels compared to the Cooper pair box. Diagonalizing
the generalized Hamiltonian in Eq. (2.22) to first order in the small parameters λi =

gi/∆i, where ∆i is the detuning of the i-th transmon transition frequency from the
resonator frequency, results in [Koch07]

HJC → eXHJCe−X ≈ HJC + [HJC, X] ≈ ~ω′resa
†a −

~

2
ω′geσz − ~χσza†a. (2.25)

Here, we have defined X = −i
∑

i(λia|i + 1〉〈i| + h.c.) and σz = |g〉〈g| − |e〉〈e|. The
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Figure 2.6: (a) Mean photon number in a resonator with linewidth κ when a coherent drive is
applied at detuning δ = ωdrive − ω

′
res for the qubit in the ground state (blue) and in the excited

state (red). (b) When the drive is applied at zero detuning δ = 0, only the phase ϕ of the
output field depends on the qubit state. The measurement of this phase allows us to distinguish
between ground and excited state. The colored circles indicate quantum fluctuations and
thermal noise added during detection, which requires a minimal measurement strength or
averaging over many realizations to distinguish between the two amplitudes.

dispersive energy shift is

~χ ≈ −
g2EC

∆(∆ − EC/~)
. (2.26)

The frequencies ω′res and ω′ge account for the frequency renormalizations due to the
dispersive interaction. Since they are typically small, we will in the following not
explicitly distinguish between the bare and the renormalized frequencies.

The important term in Eq. (2.25) is χσza†a, which can be either interpreted as a
photon number dependent qubit frequency shift (AC Stark shift) or as a qubit state
dependent resonator shift [Blais04]. In the latter interpretation the resonator has a
qubit state dependent response to a classical drive, see Figure 2.6(a), which can be
measured in the resonator output field for determining the qubit state [Wallraff05,
Gambetta06, Bianchetti09]. More specifically, the qubit becomes entangled with the
coherent resonator output field such that a measurement performed on the output field
projects the qubit onto the corresponding eigenstate. We discuss this aspect in more
detail in Section 5.3.

Due to vacuum fluctuations and additional noise added during the detection, the
integrated output field has to have a minimal amplitude to distinguish between ground
and excited state with high fidelity, compare Figure 2.6(b). This integrated amplitude
can either be increased by turning on the measurement tone for a longer time or by
increasing its power. Since the measurement time is typically limited by the finite qubit
lifetime, one aims for increasing the measurement power. However, when increasing
the power to a value where the mean photon number in the resonator exceeds the
critical photon number of ncrit = ∆2/4g2 [Blais04], the dispersive approximation on
the right hand side of Eq. (2.25) breaks down and higher order terms in the expansion
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2 Concepts of circuit quantum electrodynamics

become relevant [Reed10, Boissonneault10, Laflamme12]. While such regimes can
still be useful for realizing a high-fidelity qubit readout, the quantum non-demolition
(QND) character [Lupaşcu07] of the measurement is then no longer guaranteed.
For feedback and post-selection application the QND nature of the measurement is,
however, desirable and the alternative way to increase the distinguishability of ground
and excited state within the qubit lifetime is to use a better, possibly quantum limited
amplifier, see Chapter 4.

2.3.2 Dynamics at qubit-cavity resonance

If the qubit is tuned close to resonance with the cavity, the interaction term Hint leads
to a hybridization of the two systems and new energy eigenstates are formed. In the
two-level approximation of the transmon the corresponding eigenenergies are given
by [Haroche06]

~ω±n = n~ωres ±
~

2

√
∆2 + 4ng2 +

~

2
∆, (2.27)

where we have shifted the ground state energy to zero for convenience. On resonance
∆ = 0, the corresponding eigenstates are given by |n±〉 = (|n − 1e〉 ± i|ng〉)/

√
2. Each

resonator eigenenergy is thus split into two new energies. The splitting scales with the
square root of the photon number in the resonator, as indicated in the level diagram in
Figure 2.7(a). This

√
n scaling provides a direct proof for the anharmonic character

of the transmon and the quantum nature of the hybridization of the two systems
[Fink08, Bishop09b, Fink10b].

If the system is initially in the ground state and is probed with a coherent drive field
at frequency ω, transitions into one of the first two excited states are induced when the
drive is close to the respective transition frequency ω ≈ ω±0 . Further transitions into
higher excited states are suppressed due to the nonlinear scaling of transition energies
(compare level diagram Figure 2.7(a)). Because of this blocking of further transitions,
only one excitation may enter the system at a time – an effect which is referred to as
photon blockade [Imamoğlu97]. This effect shows up in the antibunching of photons
in the fluorescent radiation and can thus be used as a continuously driven single
microwave photon source [Lang11].

Since the interaction time between qubit and resonator is controllable, the Jaynes-
Cummings dynamics can also be used to coherently exchange energy between the two
systems. Bringing the qubit initially into its excited state |e0〉 while it is far detuned
from the resonator and then tuning it into resonance for variable time τ, the single
qubit excitation oscillates between qubit and resonator according to the time-evolution
cos(2gτ)|e0〉 + sin(gτ)|g1〉 of the initial state. Since the cavity field is initially empty
these oscillations are called Vacuum Rabi oscillations. In the experiments described
below, we make use of these oscillations for preparing single and two photon Fock
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Figure 2.7: (a) Level diagram for the Jaynes-Cummings model at zero detuning ∆ = 0. Each
level of the harmonic oscillator is split into two new levels due to the hybridization with the
qubit. A coherent drive (red), resonant with the transition from the ground to the |1−〉 state, is
off-resonant from the next higher transition. A second photon can not enter the system. (b)
Vacuum Rabi splitting vs. qubit-resonator detuning.

states [Hofheinz08, Eichler12a] as well as for entangling the qubit with itinerant single
microwave photons [Eichler12b].

2.4 General aspects of the experimental setup

In this section I describe the basic experimental principles for probing superconducting
circuits at millikelvin temperatures. I briefly summarize the chip fabrication process,
illustrate the cryogenic environment and discuss the implementation of microwave
and DC control lines. Finally, the components of the linear microwave detection chain
and the data acquisition are presented.

2.4.1 Fabricating and probing superconducting circuit devices

The superconducting circuits, which we use in our experiments, are fabricated in the
FIRST cleanroom at ETH Zurich4. Structures which have a feature size of more than a
micrometer are fabricated using photolithography. During this process we spin a thin
layer of photoresistive material (e.g. PMMA) on a niobium sputtered 4-inch sapphire
wafer, align a mask which comprises all the micron size structures on top of the resist,
and expose those regions with UV light which are removed afterwards by chemical
developing. The parts which are no longer covered by photoresist are then etched

4www.first.ethz.ch
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2 Concepts of circuit quantum electrodynamics

away using a reactive ion etcher5. Finally, the remaining photoresist is chemically
removed using aceton.

After completing the photolithographic procedure, the individual microchip devices
are cut out of the 4-inch wafer with a dicing saw6. The individual devices are then
either used as test chips for measuring basic sample properties such as resonance
frequencies and quality factors in a helium bath at T = 4.2K, or they are further
processed by writing Josephson junctions and structures with smaller feature size than
1 µm onto the chip. This is done by an electron beam lithography process, which
reaches a resolution down to 2 nm. The desired structures are written into a bi-layer
of e-beam resist, which acts as a mask for the shadow evaporation of aluminium.
Josephson junctions are realized by oxidizing the first aluminium layer in a controlled
fashion and evaporating a second layer of aluminium under a different evaporation
angle. The thickness of the oxide layer, which is predominantly controlled by the
oxidation time, and its area determine the Josephson energy of the junction. For details
about the photo- and electron beam lithography procedures realized in our lab we refer
the reader to Refs. [Göppl09, Fink10a].

In order to probe the fabricated devices in a standardized well-controlled microwave
environment, they are glued with PMMA and mounted into a printed circuit board
(PCB), see Figure 2.8(b). Care has to be taken when designing printed circuit boards
in order to avoid spurious modes in the relevant frequency range, which can act as
uncontrolled decay channels. The transmission lines on the microchip and those on
the PCB are attached to each other with aluminium wire bonds. They are placed
manually onto the sample using the wire bonder7. Wire bonds are also used to contact
the ground plain of the chip with the one on the PCB, compare Figure 2.8(a). Parasitic
resonances can be avoided by increasing the density of bond wires and by reducing
their length, see e.g. Ref [Wenner11]. For the latter reason it can also be advantageous
to use photolithographically fabricated airbridges instead of bond wires to contact
different parts of the ground plane on the chip. The microwave transmission lines on
the PCB are connected to SMP microwave connectors8, which provide an interface
for connecting standard semi rigid coaxial cables, as shown in Figure 2.8(b). Ideally,
all the transmission lines on sample and PCB are designed to have the same effective
impedance of 50 Ω as the attached coaxial cables.

In order to probe the quantum properties of the devices, they are cooled down to
millikelvin temperatures, at which thermal excitations are strongly suppressed. This
is achieved by mounting the PCB in a sample holder box attached to the base plate
of a dilution refrigerator Figure 2.8(c). All parts are made of oxygen free copper

5RIE 80 from Oxford instruments
6Disco DAD 321
7Westbond 747677E
8Rosenberger 19S102-40ME4
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Figure 2.8: (a) Image of a fabricated sample glued into a PCB and connected to it with
aluminium bond wires. (b) Full size image of the PCB with SMP connectors. (c) Image of
the sample holder box onto which the sample/PCB is mounted. Two semirigid cables are
connected to the sample trough the box. (d) Components attached to the base plate of the
dilution refrigerator including sample holders, magnetic shields, semirigid cables and various
microwave components. (e) Inner part of the dilution refrigerator with indicated temperature
stages.

to guarantee fast thermalization between the sample and the base plate. The base
temperature is typically at T = 20 mK. The holder is surrounded by a cryoperm
magnetic shield to reduce stray magnetic fields (Figure 2.8(d)). Controlled magnetic
flux bias is applied trough a small coil mounted underneath the sample (not visible in
the shown pictures).

The dilution refrigerator9 (inner part shown in Figure 2.8(e)), relies on two cooling
mechanisms [Pobell06]. Pulse tube refrigeration is used for pre-cooling down to
T ≈ 4K, while the millikelvin temperatures are reached by dilution refrigeration. The
pulse tube cooler [Mikulin84] removes heat from the system by periodically pumping

9Vericold DR200
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He4 gas into and out of two regenerators filled with porous media. One regenerator is
positioned at the upper plate, which is cooled to T ≈ 60 K. The other one is placed at
the 4 K stage underneath (compare Figure 2.8(e)). The heart of the dilution refrigerator
is a mixing chamber mounted at the base plate of the cryostat. In the steady state
of operation a dilute phase of He3 floats on top of a pure He4 phase. The energy
required for He3 atoms to pass through the boundary of the two phases is taken from
the environmental heat bath, which causes cooling when He3 is pumped through the
mixture. Heat exchange between the downwards and upwards flowing He is used for
gradually cooling down the additional plates from ∼ 800 mK down to ∼ 20 mK at
the base plate. The efficient circulation of He3 through the dilution unit is enhanced
by pumping at a large volume placed at the 800 mK plate (still). For details about
cryogenic cooling techniques we refer the reader to Ref. [Pobell06].

2.4.2 Electromagnetic control lines

When operating superconducting devices in a quantum regime, not only the relevant
modes of the sample itself have to be cooled into their quantum ground state, but
also the modes carrying the control signals which are incident to the sample need
to be close to the vacuum noise level. Since all these signals are generated at room
temperature, they have to be attenuated on the way down to the sample such that the
associated thermal noise effectively reaches the vacuum level. On the other hand the
cabling has to be chosen such that heat load from the room temperature environment
onto the cold plate is minimized. Figure 2.9 schematically shows how the three generic
types of control lines are implemented to match these conditions.

A typical microwave control line is shown in Figure 2.9(a). The microwave signals
are generated with low phase noise signal generators10. They output a coherent field
with analogous properties as the field produced by a laser at optical frequencies.
The continuous signal, which has frequencies up to 20 GHz, can either be gated
or modulated in phase and amplitude to generate controlled pulse shapes with a
bandwidth above 1 GHz. This is done by multiplying the output of the signal generator
at an IQ-mixer with a shaped pulse from an arbitrary waveform generator (AWG). For
a detailed discussion about pulse generation, modulation and calibration using AWGs
and mixers, see PhD thesis of M. Baur [Baur12].

Since the coherent microwave fields are generated at room temperature they include
thermal noise of the source, which is at least as high as the effective Johnson-Nyquist
noise at temperature T0 ≈ 300 K. The vacuum limit of noise is essentially reached for
frequencies f � kBT0/h. While for radiation at optical frequencies this inequality
is satisfied at room temperature, for microwave frequencies the noise is three orders

10e.g. Agilent E8257D and Rohde & Schwarz SMF100A
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Figure 2.9: (a) Microwave control line. (b) Flux control line. (c) DC flux bias line. For details
see discussion in the main text.

of magnitude above the vacuum limit. To attenuate these additional thermal fluctua-
tions, the signal is send through a chain of attenuators, which are thermalized at the
various temperature stages of the cryostat (compare Figure 2.9(a)). An attenuator
with attenuation constant A = −20 dB = 0.01, thermalized at temperature T , can be
interpreted as a beamsplitter with transmission coefficient A, which transmits only
1% of the incident power, while adding 99% of blackbody radiation from a resistor
at temperature T . The effective noise temperature Teff of radiation after a chain of
equal attenuators, which are thermalized at temperatures T0,T1,T2,T3, ... can thus be
estimated as

Teff
A�1
≈ ...T3 + A(T2 + A(T1 + AT0))...). (2.28)

For the sequence of temperature stages as denoted in Figure 2.9(a), this results in Teff ≈

1.1T3 and leads to an effective cooling of incoming radiation to the vacuum noise level.
As long as the microwave source has sufficient output power, the attenuation of the
coherent part of the signal can be compensated by increasing the power of the signal
generator and/or the AWG accordingly.

In order to reduce the heat load onto the base plate all microwave cables which pass
through different temperature stages and are used for control, are made of stainless
steel11. Compared to copper cables their heat conductivity is at least two orders
of magnitude lower depending on the specific temperature and the exact material
[Fink10a]. The higher amount of attenuation in stainless steel cables is not a problem
since the signals are anyway strongly attenuated on the way to the sample. The
residual heat load through the cables can be reasonably distributed among the different

11UT85-SS-SS

31



2 Concepts of circuit quantum electrodynamics

temperature stages of the cryostat by appropriately adjusting the distances between
thermalizing contacts attached to the cables [Fink10a].

While the microwave radiation couples capacitively to the on-chip circuit, the
effective Josephson energies of SQUID loops are controlled by applying magnetic
fluxes. A typical flux control line is schematically shown in Figure 2.9(b). For the
generation of flux pulses we use arbitrary waveform generators12 with a sampling
rate of 1.2 G samples per second. This high bandwidth allows us to manipulate the
transmon transition frequencies on timescales faster than their typical interaction time
with the resonator. Finite thermal noise on flux control fields does not necessarily limit
the stability of transition frequencies. By reducing the mutual inductance (i.e. coupling
strength) between the flux control line and the SQUID loop, the effective noise on
transition frequencies can in principle be reduced to a level where the frequency
stability is limited by other effects. Strong attenuation of DC currents would also
cause unwanted heating. The flux lines are therefore not as strongly attenuated as
the microwave transmission lines. All the high frequency components which are not
relevant for shaping the flux control pulse are filtered out using cold low pass filters13

with typical cutoff frequencies between 500 − 1000 MHz. Due to finite impedance
mismatches and frequency dependent attenuation in the flux line, its actual response
function deviates from that of the bare low pass filters. In order to account for these
additional filter effects we measure the response function of the flux line when the
cryostat is warm and correct the generated AWG output such that the pulse incident
on the sample agrees best with the desired pulse shape. For details about this inversion
of the flux response function, see Ref. [Baur12].

Finally, I would like to stress that it is important to minimize particularly the low
frequency noise incident on the flux line. Consequently, one has to avoid ground
loops between the instruments and the cryostat. In our setup we have achieved this
by grounding the cryostat only via the fluxline, which is connected to the AWG.
Furthermore, one could add a DC block to the input of the flux line such that fre-
quency components below a few kHz are filtered out. This, however, may require a
more involved signal shaping, which takes into account the additional filter effect in
combination with the finite repetition rate of applied flux pulses.

In addition to the flux control lines we use small coils mounted below the sample
to apply a constant magnetic flux bias to the SQUIDs (Figure 2.9(c)). Using coils
instead of on-chip flux lines for DC bias avoids a steady current flow onto the PCB,
which can lead to significant heating. The coils are fed through a twisted pair of DC
wires powered by a voltage source14 providing a maximum voltage of ±20 V and a

12Tektronix 5014 AWG
13Mini-Circuits VLF series
14SIM928 from Stanford Research Systems
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resolution of 1 mV. Above the 4 K temperature stage the wires are made of copper,
while below the 4 K stage superconducting NbTi wires are used to avoid heating. The
wires are thermalized at each temperature stage by twisting them around a copper heat
sink. Current noise through the coil is reduced by adding a high impedance low pass
filter at room temperature and shielding the cables outside the cryostat.

2.4.3 Linear detection chain: Amplification and noise

In all experiments presented in this thesis, we measure the microwave radiation emit-
ted from the sample under investigation, after applying a sequence of control fields
or while continuously driving the system. In many cases one exclusively measures
the classical part of these output fields, which carries information about the sample
properties. However, more recently we have developed methods to investigate the
non-classical features of the emitted microwave radiation by measuring higher or-
der photon correlations [Bozyigit11, Eichler11b, Eichler12a]. Because of the much
smaller energy of microwave photons compared to their optical counterpart it is
challenging to measure microwave fields with high efficiency. In particular, photon
counters in the relevant frequency range are still under development [Chen11] and the
detection of microwave radiation is most commonly realized with linear amplifiers
and analog-to-digital converters (ADCs) instead. A detailed discussion of the compo-
nents in our detection chain is presented in this section. A comparison with optical
homodyne detection and a formal description of the measured quantities is provided
in the context of photon state tomography in Chapter 3.

The detection chain used in our experiments is schematically shown in Fig-
ure 2.10(a) with all of its individual components. To visualize the effect of am-
plification and down-conversion, we consider the evolution of a signal emitted from
the sample. The signal is centered around a carrier frequency fRF with some fi-
nite bandwidth. The corresponding power spectral density S f of this output field is
schematically depicted in Figure 2.10(b). The radiation is send into a high electron
mobility transistor (HEMT) amplifier which is thermalized at the 4 K plate. Two
isolators between the source and the HEMT amplifier provide directionality in the
propagation of radiation. While they efficiently attenuate thermal noise which prop-
agates backwards from the 4 K stage to the sample, they are – in the ideal case –
perfectly transmitting in forward direction15. In practice, however, they impose addi-
tional attenuation and insertion loss also in forward direction, which together with the
cable losses lead to a total attenuation A < 1 between sample and HEMT amplifier. In
the relevant frequency range around 7 GHz the best available HEMT amplifiers add
NHEMT ≈ 6 − 10 noise photons per Hz per second to the signal at the input. The noise

15Note that the development of on-chip circulators is an active field of research [Kamal11]
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spectral densities in units of photons per Hz per second at different points in the detection
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for details.

number is related to the noise temperature THEMT by the Bose-Einstein distribution
NHEMT ≡ 1/(eh f /kBTHEMT − 1) where f is the frequency at which the noise power is
evaluated. Including the damping before amplification, this leads to the following
effective noise offset in the power spectral density [Pozar93]

Nnoise + 1 =
1
A

+
NHEMT

A
+ ... (2.29)

at the output of the HEMT amplifier. The additional contribution ′ + 1′ accounts
for the fact that even in the ideal case where NHEMT = 0 and A = 1 there are at
least amplified vacuum fluctuations present in the output field of a phase-insensitive
amplifier (compare Figure 2.10(c) and e.g. Ref. [Clerk10]). We will discuss this
point in more detail in the context of parametric amplification. In the limit where the
gain of the HEMT amplifier is much larger than the added noise photon number of
the following low noise (LN) amplifier GHEMT � NLN all noise contributions due to
amplification and attenuation at later stages can be neglected. If this is not the case,
we have to add more terms to Eq. (2.29) according to Friis formula [Pozar93]. Note
that all the additional amplification stages are necessary to amplify the electrical field
to a value to which the ADC is sensitive enough. Due to the finite resolution of the
ADC (14 bit in our setup), it is important to properly adjust the total amount of gain to
optimally use the range of the ADC without clipping the sampled signal. A typical
voltage range of the ADCs used in our setups is ±1 V.

The first two amplification stages at room temperature are followed by an analog
down-conversion. During this process the signal is multiplied at an IQ-mixer with
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the coherent field of a local oscillator (LO). The frequency of the LO field is offset
by an IF frequency of 25 MHz from the center frequency of the detected band. Due
to this multiplication of frequency components, the frequency component which was
before at fRF is shifted down to 25 MHz [Pozar93], see Figure 2.10(d). Since we
do not detect the radiation at the second output port of the mixer the noise level is
effectively increased by a factor of two [Lang09]. This is due to the backfolding of
noise at frequencies which had a positive detuning from the local oscillator. Despite
the increase in noise, the advantage of this heterodyne detection scheme is that
no calibration of relative phases and amplitudes of the mixer outputs is required.
Furthermore, the backfolding effect is drastically reduced in the case where the most
significant noise contribution originates from a narrow-band amplifier which has small
gain at the backfolded frequency components. This is for example the case for the
parametric amplifiers discussed in Chapter 4. For typical values of loss A = 3dB ≈ 0.5
and amplifier noise NHEMT = 10 the total noise offset becomes ∼ 45. This value
can either be reduced by improving the first amplification stage (Chapter 4) or by
minimizing cable losses between sample and HEMT amplifier using superconducting
semirigid cables. They provide reduced radiation loss while being thermally isolating.

Before sampling the signal with a 100 MHz ADC (i.e. 10 ns sampling time) the
frequency components above 50 MHz and below a few kHz are filtered out using a low
pass filter and a DC block. This is necessary to avoid backfolding of frequency compo-
nents above 50 MHz during the second digital down-conversion step realized with field
programmable gate array (FPGA) electronics16. The digital down-conversion returns
two quadrature components X(t) and P(t), which are related to the amplitude A and
phase φ of the detected field by X + iP = Aeiφ. They can be further processed on the
FPGA by performing operations such as filtering, averaging, Fourier transformation
or histogramming [Lang09, Bozyigit10]. The result after these operations is stored
in a RAM on the FPGA board and finally transferred to the host computer via PCI.
All instruments which are used for generation and detection of microwave fields are
phase-locked to each other by a Rubidium based 10 MHz reference clock17.

16Xilinx Virtex 4
17Stanford Research FS725
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Chapter 3
Characterizing quantum microwave
radiation with linear detectors

Microwave frequency quantum fields confined in cavities have been generated and
characterized with remarkable control using Rydberg atoms and superconducting
qubits for state preparation and readout. These experiments have illuminated fun-
damental principles of quantum physics, e.g. by exploring the coherent superposi-
tion of quantum states [Deleglise08, Hofheinz09] and their decoherence [Brune96,
Deleglise08, Wang09], the entanglement between multiple modes [Wang11] and
the stabilization of Fock states using quantum feedback [Sayrin11]. More recently,
progress has also been made in the characterization of propagating quantized mi-
crowave fields. They have so far been prepared in squeezed [Castellanos-Beltran08]
and single photon states [Houck07, Astafiev10] and fully characterized using time-
correlation measurements [Bozyigit11, Lang11] and quantum state tomography meth-
ods [Mallet11, Eichler11b, Menzel10, Eichler11a, Flurin12]. These developments
have also benefited from advances in the efficient detection of microwave fields.
Both quantum limited linear amplifiers [Yurke06, Yurke87, Castellanos-Beltran08,
Bergeal10a, Kinion08, Hatridge11] and photon counters [Chen11, Romero09] signif-
icantly extend the range of potential quantum optics experiments using microwave
photons interacting with superconducting qubits, nanomechanical resonators, quantum
dots [Frey12, Delbecq11], spin ensembles [Schuster10, Kubo10] and Rydberg atoms
[Hogan12].

The use of itinerant microwave photons in quantum optics experiments requires
efficient field characterization methods. A detailed understanding of microwave and
optical field detection schemes allows for adapting existing quantum optics concepts
to the special requirements of microwave fields. I therefore discuss field quadrature
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detection schemes at microwave frequencies, their optical analogue and their use
for determining the quantum state of a single mode of a radiation field. In general,
the quantum state of any field mode a is characterized by its density matrix ρa or
an equivalent quasi-probability distribution such as the Wigner, the Husimi Q or the
Glauber-Sudarshan P function [Gerry05, Carmichael99]. Less widely appreciated,
the mode a is also equivalently specified by the infinite set of its moments 〈(a†)nam〉

[Bužek96].
In this chapter, I present experiments in which we measure such field moments to

characterize single photon states and their superposition with the vacuum. I discuss
the relation between measurement results of single-channel detection schemes and
quasiprobability distributions. New insight into microwave state tomography is given
by developing a method to reconstruct the maximally likely Fock-space density matrix
directly from the measured quadrature histograms. Furthermore, I present state
tomography experiments in which quantum states beyond the single-photon level have
been prepared and reconstructed. I also show that two-channel microwave detection
can be interpreted as a positive P function measurement [Agarwal94] even in the
presence of added classical detection noise. Finally, I demonstrate full two-mode
tomography for a Hong-Ou-Mandel type experiment using similar ideas1.

3.1 Generating single microwave photons

Sources which emit exactly one photon at a time are essential components for the
implementation of linear optics quantum computation schemes [Knill01, O’Brien09]
and have a wide range of applications in quantum communication. Although such
radiation sources exist for a long time at optical frequencies [Diedrich87, Lounis05]
they have only recently been realized in the microwave frequency range [Houck08,
Bozyigit11]. Here, I discuss the implementation of such an on-demand single photon
source using a superconducting quantum circuit.

3.1.1 Sample characterization

For the preparation of single photons, we use a device which consists of a single
transmission line resonator and a strongly coupled transmon qubit, see Figure 2.5(a).
The transmission line resonator has one weakly coupled input port used for coherent
driving and one strongly coupled output port into which the largest part of the stored
radiation is emitted. The transmon qubit is equipped with two individual control lines:
One microwave line for driving transitions between individual energy levels and one
flux line for tuning the qubit transition frequency on nanosecond timescales.

1The Hong-Ou-Mandel experiment has been realized in collaboration with C. Lang.
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We characterize the device properties by first probing the vacuum Rabi mode
splitting as discussed in Section 2.3. While tuning the qubit frequency with a time-
varying magnetic flux, we measure the resonator transmission of a coherent drive field
applied at frequency ω/2π (Figure 3.1(a)). The resulting resonance peaks are fitted
to the model in Eq. (2.27) to extract the coupling constant g/2π ≈ 65 MHz and the
resonator frequency ωres/2π ≈ 7.135 GHz. In a second experiment we perform qubit
spectroscopy to find the qubit transition frequency ωge/2π chosen far away from the
resonator. While probing the resonator transmission at a fixed frequency we apply an
additional drive tone to the qubit of which we vary the frequency Figure 3.1(b). Due
to the dispersive shift discussed in Section 2.3.1 the transmission through the resonator
changes when the drive tone is resonant with the qubit transition. For low drive powers
we observe one resonance peak, which corresponds to the transition from the ground
to the first excited state ωge. When increasing the drive power, a second peak shows
up which corresponds to a two-photon transition from the ground state into the f -level
of the transmon. From the center frequencies of the two spectroscopy peaks, we
extract ωge/2π ≈ 6.44 GHz and the anharmonicity α = (ωge − ωe f )/2π ≈ −405 MHz.
Based on the theoretical transmon model [Koch07] we find the charging energy
EC/h = 350 MHz.

From the determined values of g, ωge and EC we calculate the dispersive shift
χ/2π ≈ −2.05 MHz at the chosen qubit frequency using Eq. (2.26). In order to
confirm this value experimentally, we measure the resonator frequency shift due to
the dispersive interaction with the qubit, see Figure 3.1(c). During one measurement
we leave the qubit in the ground state and during a second one we saturate the qubit
transition such that is is in the ground or excited state with equal probability. While in
the first case the resonator is shifted by −χ/2π, in the second measurement the shift
is zero [Wallraff05, Bianchetti10a]. By fitting the measured transmission spectra to
Lorentzian lines we find agreement with the calculated dispersive shift. From the
same fit we extract a resonator decay rate of κ/2π ≈ 6.35 MHz.

We then employ time-resolved measurements to determine the qubit decay and
dephasing times (T1,T ∗2). In a Rabi type experiment we apply a 10 ns long coherent
pulse resonant with the qubit transition frequency ωge/2π via the qubit charge line.
Further excitations into higher transmon levels are avoided by using a calibrated DRAG
pulse shape [Motzoi09, Gambetta11], which is designed exactly for this purpose. A
detailed discussion of DRAG pulse calibration can be found in [Baur12].

By varying the amplitude of the pulse we drive Rabi oscillations between ground
and excited state. The state evolution of an initial ground state is |g〉 → cos θ |g〉 +

eiφ sin θ |e〉. The effective Rabi angle θ is proportional to the drive amplitude, the
pulse length and the coupling capacitance between qubit and gate line. The phase φ is
controlled by the phase of the drive field. For θ = π/2 the qubit state is brought into the
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Figure 3.1: Spectroscopic sample characterization. (a) Measurement and fit of the vacuum
Rabi mode splitting. (b) Transmon spectroscopy for two different drive powers. For weak drive
(blue) only the ωge transition (g-e) is visible, while for larger drive powers (red) a two-photon
transition into the f -level is also possible (g-f/2). Solid lines are fits to Lorentzian functions.
(c) Measured transmission S 21 through the resonator for varying probe frequency when the
qubit is in the ground state (blue) and when it is driven into saturation (red). The two curves
are separated by the dispersive shift χ/2π and fitted by Lorentzian lines (solid lines).

equal superposition state (|g〉 + eiφ |e〉)/
√

2 while for θ = π the qubit is prepared in the
excited state. Further increase of the pulse amplitude drives the system back into the
ground state, as can be seen from the measurement data shown in Figure 3.2(a). During
this experiment the qubit population is measured using a pulsed dispersive readout
[Wallraff05]. After completing the qubit operation, we apply a coherent readout
field to the dispersively coupled resonator, see insets of Figure 3.2, which changes
its response depending on the qubit state. The average output field is described by
so-called cavity Bloch equations and is used to determine the average qubit population
[Bianchetti09].

Using the pulse amplitudes for π and π/2 rotations extracted from the Rabi experi-
ment, we measure the qubit relaxation time T1. We bring the qubit from the ground
into the excited state and vary the delay time τ between preparation and readout. For
increasing τ the qubit is more likely to be found in the ground state, see Figure 3.2(b).
By fitting the experimental data to an exponentially decaying function we extract the
qubit relaxation time T1 = 1.1 µs. The dephasing time of the qubit T ∗2 is measured
in a Ramsey type experiment. By applying a π/2 pulse, the qubit is first prepared
in an equal superposition state and then left under free evolution for variable time
τ. In a frame rotating with the drive frequency ωd/2π, the superposition state ac-
quires a dynamical phase (ωge − ωd)τ during this evolution, which is measured by
applying a second π/2 pulse and reading out the excited state population. In the ideal
case, in which the transition frequency ωge is perfectly stable over time the decay
time of the observed fringes (compare Figure 3.2(c)) is given by the relaxation time
T ∗2 = 2T1. In contrast, if the transition frequency ωge/2π is subject to fluctuations,
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Figure 3.2: (a) Measurement and fit of Rabi oscillations. pth indicates the small residual
excited state occupation in the steady state, compare Section 5.1.5. The amplitude of the pulse
is varied for fixed pulse length. (b) The qubit relaxation time T1 is measured by varying the
delay between preparation and readout pulse. (c) Result of a Ramsey experiment from which
the dephasing time T ∗2 is determined. The data is fitted to a Gaussian envelop function.

the acquired phase is different in each experimental run and the fringes are washed
out on average. The decay of the fringes in a Ramsey experiment is not necessar-
ily exponential but depends on the spectral density of the noise. If the dominating
contribution is from 1/ f noise [Koch07], the Ramsey fringes decay with a Gaussian
function ∝ e−(τ/T ∗2 )2

[Ithier05, Bylander11]. For the particular situation described here,
the qubit was biased far away from the sweet spot, where it is expected to be very
sensitive to flux noise through the SQUID loop. When fitting the Gaussian model to
the measured fringes we find a dephasing time of T ∗2 ≈ 230 ns.

3.1.2 Vacuum Rabi oscillations

The tunability of qubit transition frequencies on nanosecond timescales with magnetic
flux pulses can be used to let the qubit interact resonantly with the resonator for a
controllable amount of time. This allows us to map a qubit excitation coherently
into the resonator. We consider the situation where the qubit is initially far detuned
from the resonator. After preparing the qubit in the excited state |e〉, we apply a flux
pulse which tunes the qubit transition frequency into resonance with the resonator.
The flux pulse has a rise time shorter than the vacuum Rabi period π/g such that
we can assume that the change in qubit frequency is quasi-instantaneous compared
to the timescale of interaction. The system therefore stays in its initial state |e0〉
before it starts to resonantly interact with the cavity. According to the interaction
Hint/~ = −ig(aσ+ − h.c.) the initial state evolves as cos(gt) |e0〉+ sin(gt) |g1〉 such that
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Figure 3.3: Time-resolved vacuum Rabi oscillations. The slight tilt is due to imperfect
calibration of the flux pulse. (a) Final excited state population of a qubit initially in state |e〉
after applying a flux pulse of varying amplitude and length. (b) Cut through the data shown in
(a) along the dashed white line and fit to an exponentially decaying sinusoidal oscillation.

the single initial excitation will sinusoidally oscillate between qubit and resonator.
When the qubit is tuned back to its initial frequency after time τ, the final qubit
exctiation is pe = 〈|e〉 〈e|〉 = (1 + cos(gτ)) /2 while the remaining excitation is left in
the resonator as a photon.

In Figure 3.3(a) we show the results of an experiment in which the final qubit
excitation has been probed after applying a flux pulse with variable voltage for time
τ. The qubit detunig ∆ from the resonator, which is approximately proportional to
the voltage of the flux pulse, reaches zero at ∼ 0.135V . For this amplitude the qubit
excitation can be fully transferred into the resonator. At finite detuning the oscillation
frequency becomes faster due to the larger energy separation between the two relevant
eigenstates (compare Eq. (2.27)), while the contrast of the oscillations decreases. The
qubit excitation is only fully swapped into the resonator when tuned into resonance.
A cut through the data along the dashed white line is shown in Figure 3.3(b) and
corresponds to the dynamics of the qubit population at resonance. The oscillations
have a periodicity of 7.6 ns which is close to the expected value π/g ≈ 7.7 ns, where
g/2π ≈ 65 MHz is known from the spectroscopic measurement of the vacuum Rabi
mode splitting. The sinusoidal oscillations decay exponentially, mostly due to the
decay of the resonator field into the transmission line and partially due to the intrinsic
qubit decay. The decay time extracted from the fit to the data is 42 ns ≈ (T1 + 1/κ)/2.
which is consistent with the spectroscopic measurement of κ and the individually
measured T1 time.

3.1.3 Mapping an arbitrary qubit state onto a single photon state

From the measured vacuum Rabi oscillations we determine the flux pulse parameters
for which the qubit excitation is fully transferred into the resonator. According to the
Jaynes-Cummings dynamics we expect that for this specific interaction time any initial
qubit state c0 |g〉 + c1 |e〉 is mapped onto the equivalent resonator state c0 |0〉 + c1 |1〉.
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Not only the qubit population is thus mapped onto the mean number of photons in
the resonator 〈|e〉 〈e|〉 → 〈a†a〉, but moreover any initial qubit coherence translates
into a coherence of the final photon state 〈σ−〉 → 〈a〉. These photon states then
decay exponentially into a propagating transmission line mode, where we detect them
using the linear detection chain described in Section 2.4.3 [Houck08, Bozyigit11,
Eichler11b].

After applying a Rabi pulse with amplitude θ to the qubit and after mapping the
qubit state onto the resonator, we record filtered time-traces of the resonator output
field similarly as in Ref. [Bozyigit11]. The average over 5000 repetitions of such
measurements are shown in Figure 3.4(a). If the output field was detected with a
bandwidth much larger than the decay rate κ, the averaged time-traces would resemble
the temporal envelope of the photon field. This has a fast rise time on the order
of π/g and then decays exponentially with decay time 2/κ [Bozyigit11]. For the
measurements in Figure 3.4, however, we have chosen a filter function which is
matched to the temporal profile of the photon pulse. Such a filter smears out the fast
rise-time but makes the photon detection more efficient. This relation between the
chosen filter function and detection efficiency is discussed in Section 3.2.2 in more
detail.

In addition to the mean amplitude 〈a〉 of the field, we also measure the average
emitted photon number 〈a†a〉. This is done in real-time on the FPGA by squaring
individual time-traces before averaging them [Bozyigit10]. The result of this mea-
surement is shown in Figure 3.4(b), where the constant noise offset originating from
added amplifier noise is subtracted from the data. While for a classical coherent state
we would expect the average photon number to be the square of the mean amplitude,
the two quantities behave differently for the generated single photon states. In Fig-
ure 3.4(c) we compare the measured mean amplitude with the mean photon number for
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different Rabi angles θ. The mean amplitude |〈a〉| reaches its maximum for an applied
π/2 pulse, while the mean photon number 〈a†a〉 is maximal for θ = π. As expected,
the mean photon number is equal to the initial excited state population 〈|e〉 〈e|〉 and the
mean amplitude is proportional to the qubit coherence 〈σ−〉. This set of measurements
thus indicates that the state of the transmon qubit can be efficiently mapped onto a
flying photonic qubit [Houck08, Bozyigit11].

3.2 Experimental photon state tomography for single
microwave photons

In order to ultimately verify that the emitted radiation has single photon character one
has to show that the expectation value 〈(a†)2a2〉 vanishes. For the presented on-demand
microwave single photon source this has been first realized in our lab by measuring
time-correlation functions [Bozyigit11] and quadrature histograms [Eichler11b]. In
the following, I describe the latter approach, which allows us to access all higher order
field-correlations of type 〈(a†)nam〉 systematically. This turns out very useful in the
context of quantum state tomography beyond the single channel and single photon
level. For the detection of the single microwave photons we use a state-of-the-art
linear detection chain, see Figure 2.10. A major challenge was to develop appropriate
state reconstruction methods, which allow for the measurement and interpretation of
the relevant quantum correlations in the presence of significant added classical noise.

3.2.1 Quadrature detection and optical its analog

We first derive a formal relation between the output field of the photon source (i.e. trans-
mission line resonator) and the measured quadratures X and P. Analogies between the
microwave case and equivalent optical detection schemes enable us to adapt existing
concepts from quantum optics for our purposes. We consider both the measurement of
a single field quadrature and the simultaneous detection of two canonically conjugate
quadratures. The radiation field of interest is described as a single bosonic mode a
reaching the detector within a specific window in time. The single mode a can be
isolated from the continuum of modes by performing temporal mode matching, i.e.
integrating the continuous signal over the temporal profile of the photon pulse which
is to be characterized [Carmichael08, Eichler11b]. We discuss ideal temporal mode
matching for an exponentially decaying cavity field in the next Section 3.2.2.

For a full reconstruction of the quantum state of the field, both the photon number
statistics and all coherences between the different contributing Fock states have
to be experimentally determined. This can be achieved by measuring generalized
field quadrature components X̂φ ≡ 1

2 (ae−iφ + a†eiφ), which naturally allows for the
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exploration of the full phase space, i.e. the off-diagonal elements of the density
matrix in the number state basis [Lvovsky09]. In optical systems, where photon
number statistics are naturally obtained using photon counters, such a field quadrature
measurement can be realized using homodyne detection schemes [Scully97]. In this
approach, the field of interest is combined on a beam splitter with a strong coherent
field of a local oscillator, such that the difference of the photocurrents at the two
beam splitter outputs is proportional to a specific field quadrature X̂φ of the input
field (Figure 3.5(a)). The quadrature phase φ can be tuned by changing the local
oscillator phase. Instead, microwave field quadratures are usually measured by down-
converting the field with a local oscillator tone using a microwave frequency mixer
and sampling the electrical field directly using analog to digital converters (ADC).
However, these ADCs are only sensitive enough to detect large amplitude fields
which contain a macroscopic number of photons per sampling time (∼ 1010), such
that a linear amplification stage is required in the process of detection, as shown in
Figure 3.5(c). The noise added during this amplification process is typically the main
limitation for the detection efficiency of microwave fields as discussed below.

Instead of measuring a single field quadrature for different phases φ, two conjugate
field quadratures can be simultaneously measured to get all the information required
for a complete quantum state reconstruction [Arthurs65, Braunstein91, Caves94,
Welsch99, Yuen80]. One possible realization of such a measurement uses a beam
splitter and two quadrature detectors at each output [Noh91] (Figure 3.5(b)). The beam
splitter necessarily introduces an additional mode h through its open port. This mode
adds [at least] the vacuum noise to the signal with which the simultaneous detection
of conjugate variables preserves Heisenberg’s uncertainty principle. Taking the beam
splitter transformations a→ (a + h)/

√
2 and h → (a − h)/

√
2 into account, the two

detected field quadratures at the beam splitter outputs correspond to real X̂ and imagi-
nary P̂ part of the complex amplitude a + h†. This holds for both the optical and the
microwave case. However, for microwaves we still have to consider the transformation
of the signal mode due to the linear amplification stage. A generic phase-insensitive
linear amplifier transformation can be modeled as [Haus62, Caves82, Clerk10]

a→
√

Ga +
√

G − 1h†amp (3.1)

where hamp is an additional bosonic mode accounting for the noise added by the
amplifier. Again, in the ideal (i.e. quantum limited) case hamp is in the vacuum state,
and for a more realistic scenario in a thermal state. Combining the amplification
transformation with the beamsplitting at the mixing stage (compare Figure 3.5(c)) and
dividing by

√
G/2 we find the relation [daSilva10]

Ŝ ≡ a + h† = X̂ + iP̂. (3.2)
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Figure 3.5: Field quadrature detection schemes for optical and microwave fields. (a) Schematic
of balanced optical homodyne detection. The signal field a is combined with a coherent local
oscillator (LO) field with controlled phase φ at a beam splitter and the quadrature amplitude X̂φ

is detected with photon counters (n) in the two output arms. (b) Double homodyne detection
scheme. The signal field a is split into two parts at a beam splitter while introducing an
additional vacuum mode h. Placing a homodyne detector as described in (a) at each of the
two beam splitter outputs allows for measuring two conjugate quadratures (i.e. the complex
amplitude Ŝ ). (c) Measurement of the complex amplitude at microwave frequencies. The
signal mode is amplified with a phase-insensitive linear amplifier introducing an additional
noise mode hamp. The amplified output is split into two parts at a microwave frequency
mixer, while adding the mode hmix, and multiplied with a coherent local oscillator field. The
down-converted electrical field is sampled with analog to digital converters (ADC).

with the total noise mode h =

√
G−1

G hamp +

√
1
G hmix. Here, we have defined the

complex amplitude operator Ŝ representing the two conjugate quadratures as a sin-
gle complex number. In the limit of large gain G � 1 the total noise is dominated
by the amplifier noise h ≈ hamp and the following noise contributions can be ne-
glected [Leonhardt94]. Furthermore, we notice that once we amplify the field phase-
insensitively at least the vacuum noise is added independently of whether we detect
only one quadrature or two conjugate quadrature components. Once the signal is
amplified it is thus natural to detect 2 conjugate quadratures since the signal-to-noise
ratio is unaffected by the necessary splitting of the signal.

It is important to mention that there is a detection scheme using linear amplifiers,
which is ideally noiseless for one quadrature component. This is achieved by using a
phase-sensitive amplifier instead of a phase-insensitive one which can – in the quantum
limit – be modeled by the squeezing transformation [Caves82, Loudon00, Yurke06]

a→
√

Ge−iφa +
√

G − 1eiφa† (3.3)

with the tunable phase φ. Amplifiers described by this transformation have
recently been built and are working close to the quantum limit [Yurke87,
Castellanos-Beltran08, Eichler11a, Hatridge11]. The quadrature X̂φ is noiselessly

46



3.2 Experimental photon state tomography for single microwave photons

amplified while its conjugate quadrature is deamplified. The detection scheme is
thus equivalent to an optical homodyne detection [Caves94, Lvovsky09, Mallet11,
Filippov11]. In Section 4.4.3 we show how to operate a degenerate parametric ampli-
fier in either a phase-sensitive or a phase-insensitive mode.

We note that while for optical fields the simultaneous detection of two conjugate
quadratures requires a more complicated setup than for photon number detection it
is the natural measurement observable for microwave fields. In the following, we
will therefore focus on this type of measurement in the context of quantum state
reconstruction.

3.2.2 Temporal mode matching

Throughout the previous section we have described the photon field, which is to be
characterized, by a single time-independent mode a. Here, we discuss the relation
between this single mode a and the time-dependent field aout(t) which is continuously
sampled in an experiment. The link between the two is given by a mode-matching
relation

a =

∫
dt f (t)aout(t) (3.4)

where the normalization condition
∫

dt| f (t)|2 = 1 of the temporal profile function f (t)
guarantees that [a, a†] = 1 is satisfied. Experimentally, the function f (t) is realized
as an appropriate digital filter, as discussed in more detail below. The best choice
of f (t) depends on the temporal shape of the field, i.e. the properties of the coupling
between radiation source and the transmission line under observation. In the following
we discuss optimal temporal mode matching for a single-sided cavity acting as the
radiation source (Figure 3.6).

We represent the cavity mode for the following calculation by the annihilation
operator A(t) to distinguish it from the detected output mode a. Note, that we work in
a Heisenberg picture, where the operator A(t) is time-dependent. We assume that at
time t = 0 the cavity is prepared in a specific state described by the statistics of A(0)
and then left under free evolution [Walls94]

A(t) = e−
κt
2 A(0) +

√
κe−

κt
2

∫ t

0
dτe

κτ
2 ain(τ). (3.5)

From input-output theory [Gardiner85], we know that the cavity field decays with rate
κ into the output modes according to

aout(t) =
√
κA(t) − ain(t). (3.6)

The input modes ain(t) can be understood as a continuous stream of independent
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3 Characterizing quantum microwave radiation with linear detectors

modes each reaching the resonator at time t and ideally carrying only the vacuum
noise.

By inserting the above expressions into the definition of a we obtain only one term

A(0)
√
κ

∫ ∞

0
dte−

κ
2 t f (t)

depending on the cavity field. In order to maximize the efficiency in detecting the
state prepared at time t = 0 we have to find f (t) which maximizes this term. The
choice f (t) =

√
κe−

κt
2 Θ(t) does so, where Θ(t) is the Heaviside step function. The total

expression for Eq. (3.4) then reduces to

a = A(0)κ
∫ ∞

0
dte−κt − κ1/2

∫ ∞

0
e−

κt
2 ain(t)dt + κ3/2

∫ ∞

0
e−κt

∫ t

0
e
κτ
2 ain(τ)dτdt,

(3.7)

which due to the identity

κ3/2
∫ ∞

0
e−κt

∫ t

0
e
κτ
2 ain(τ)dτdt = κ3/2

∫ ∞

0

(∫ ∞

0
Θ(t − τ)e−κtdt

)
e
κτ
2 ain(τ)dτ

= κ1/2
∫ ∞

0
e−

κτ
2 ain(τ)dτ (3.8)

simplifies to

a = A(0). (3.9)

By proper choice of f (t) we can thus recover the state of the source field A(0) with
unit efficiency in the transmission line. Note that a finite mode matching efficiency
only reduces the total detection efficiency but does not affect the statistical properties
of a. This is due to the identity

〈(a†)nam〉 = η(n+m)/2
F 〈(A(0)†)nA(0)m〉,

where
√
ηF ≡

√
κ
∫ ∞

0 dte−
κ
2 t f (t). For perfect mode matching ηF = 1, while for

imperfect filtering ηF < 1. In the latter case, ηF can be interpreted as an attenuation
constant equivalent to a loss in detection efficiency.

We experimentally realize mode matching by implementing an appropriate digital
filter function in the FPGA. The goal of this mode matching procedure is to extract a
single value S from the continuous stream of sampled quadratures, which corresponds
to the measurement result of the complex amplitude operator Ŝ = a + h†. All
detection inefficiencies due to cable losses, added amplifier noise and mode matching
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Figure 3.6: (a) An optical analog of the photon source realized in our experiments is shown
as a single sided cavity with one highly reflective and one partially transmitting mirror. A
single photon is generated in the cavity and then emitted at a rate κ into output modes aout(t)
resulting in an exponentially decaying envelope of the single photon pulse while the modes
ain(t) remain in the vacuum state. The signal is amplified, down-converted, and digitized with
an analog-to-digital converter. The digitized signal is then convolved with mode matching
filter coefficients and the resulting quadrature pair {X, P} is stored in a 2D histogram. (b)
Comparison between the filter coefficients (gray bars) and the exponential decay of the cavity
(red solid line) used in the experiments for Ref. [Eichler11b].

inefficiency are lumped into the state of the single effective noise mode h.

The digital down-conversion (DDC) outputs a continuous stream of quadrature pairs
{Xt, Pt}, which we write for convenience as the single complex envelope S t = Xt + iPt.
The index t labels the discrete time-steps in units of the sampling time 10 ns. As
long as the effective detection bandwidth B = 50 MHz is large compared to κ/2π,
we can interpret S t as a discretized version of the unfiltered time-resolved signal
aout(t) + h†out(t). The measurement record S t is further processed by convolving it with
filter coefficients ft

S t →

Ncoeff∑
τ

S t+τ fτ, (3.10)

where Ncoeff = 40 is the number of filter coefficients. The number of available filter
coefficients depends on the specific FPGA application and is limited due to the finite
number of multiplications, which can be performed on the FPGA board in realtime.
To achieve temporal mode matching we chose filter coefficients ft, which resemble
the exponential decay of the resonator output field. In practice, the implemented filter
coefficients are slightly different from the ideal ones, since the filter is also designed
to eliminate other frequency components, originating e.g. from finite DC offsets at
the ADC or from coherent pump fields present when operating a parametric amplifier.
The filter coefficients used in the experiments for Ref. [Eichler11b] are shown in
Figure 3.6(b) in comparison with the resonator exponential decay. The integrated
overlap between the two is ηF = 90%.
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3 Characterizing quantum microwave radiation with linear detectors

3.2.3 Data acquisition: Generating quadrature histograms

From the filtered measurement record we determine a single value S = X + iP
(Figure 3.6), which corresponds to a measurement result of Ŝ and is finally stored in a
histogram. In order to find the optimal sample point, for which the filter function and
photon pulse have maximal overlap, we first record a time-trace of the average filtered
photon number (Figure 3.4(b)) and identify the time at which it becomes maximal. By
adjusting an appropriate trigger delay, we can specify this optimal sample point after
analyzing the full time-resolved measurement data2. From the selected quadrature
pair {X, P} and an additional bit which specifies whether the source had been turned
ON or OFF, we construct a 21-bit address. In each trial of an experimental run the
measurement result is used to increment the memory value, to which this address
points. In this way we accumulate 2D histograms of measured {X, P} pairs for the
two cases in which the source is turned ON and OFF, respectively. Given the 10-bit
discretization of the X and P values, the memory capacity on the FPGA board limits
the maximal number of counts per histogram bin to 216 = 65536.

We can also construct the addresses, which specify the different histogram bins,
from more than two independent quadrature values. This enabless us to record multi-
dimensional histograms in a similar fashion. We use such 3D and 4D histograms to
measure qubit-photon entanglement or correlations between two different field modes
as discussed in Section 5.1 and Section 3.6, respectively.

After this general discussion about the data acquisition we turn to a specific experi-
ment. For a pulsed single photon source similar to the one described in Section 3.1, we
have measured such 2D histograms of quadrature pairs X, P. To extract the properties
of mode a alone we perform two measurements. One in which the signal mode a is left
in the vacuum (OFF), serving as a reference measurement for the noise, and a second
one, in which the state of interest |ψ〉, such as a Fock state |1〉, is prepared (ON). In
practice both histograms are accumulated in an interleaved fashion, changing between
the two cases every 25 µs to avoid systematic errors due to drifts. Since the number of
effectively added noise photons turns out to be N0 ≈ 64 in the experiments presented
here, the measured histograms for both vacuum D[|0〉〈0|] and for a Fock state D[|1〉〈1|]

are dominated by the noise added during detection, see Figure 3.7(a) and (b). However,
when calculating the numerical difference of both histograms, see Figure 3.7(c), we
already clearly observe the circular symmetric character of the single photon phase
space distribution. The small deviation from an ideal circular symmetry is due to a
slight coherent admixture of the vacuum |0〉 to the single photon Fock state |1〉 caused
by small errors in the state preparation.

2The trigger delays in the FPGA histogramer applications are aligned to those in the TvMode, such that
the first point appearing in a TvMode time-trace corresponds to the value, which is written into the
histogram.
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3.3 Interpretation and analysis of quadrature histograms

Figure 3.7: (a) Measured quadrature histogram D[|0〉〈0|](S ) for a in the vacuum (OFF) where
S = (X + iP). The inset shows a horizontal cut through the histogram (red). The distribution is
well described by a normal distribution (blue) with width σ = 5.7 (indicated by black arrows)
corresponding to a system noise number of N0 ≈ 64. (b) Quadrature histogram D[|1〉〈1|](S ) for
preparation of single photon Fock states. (c) Difference of D[|1〉〈1|](S ) and D[|0〉〈0|](S ). Note
the two different color scales, both given in units of D[|1〉〈1|](0), indicating the small difference
between the two histograms.

3.3 Interpretation and analysis of quadrature histograms

To be able to further analyze the histogram data shown in Figure 3.7, it is useful to
review the concept of phase space distributions used in quantum optics. As explained
in the following, we can identify the two measured histograms as specific phase space
representations of the quantum states ρa and ρh of the signal mode a and the noise
mode h, respectively. Based on these relations we are able to systematically extract
the single photon character of radiation in mode a, even in the presence of significant
added amplifier noise.

3.3.1 Phase space distributions

Due to the non-orthogonality of coherent states 〈α|β〉 = e−
1
2 |α|

2− 1
2 |β|

2
eα
∗β an arbitrary

density matrix ρa can be expanded as a linear combination of projectors |α〉〈α| onto
coherent states

ρa =

∫
α

Pa(α)|α〉〈α|. (3.11)
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3 Characterizing quantum microwave radiation with linear detectors

Here, we have defined
∫
α
≡

∫
C

d2α for integrals over the complex plane and Pa(α)
as the Glauber-Sudarshan P function [Glauber63, Carmichael99], which uniquely
represents the density matrix as a distribution in phase space. Pa(α) is always real-
valued but can be negative and can contain singularities proportional to derivatives
of the Dirac δ distribution to all orders [Carmichael99]. As can be seen from its
definition in Eq. (3.11), the P function reduces to a two-dimensional Dirac distribution
Pa(α) = δ(2)(α− β) for coherent states |β〉. Coherent states thus appear as single points
in phase space with no statistical spread similar to their classical counterparts. For this
reason and due to its possible negative values the P function does not directly describe
the statistics of measurements. However, it is very useful since its statistical moments
directly correspond to the normally ordered moments

〈(a†)man〉 =

∫
α

(α∗)mαn Pa(α) (3.12)

of the field operator a and because of its analogy to probability distributions of classical
fields.

A second distribution, which is of particular relevance for the following discussion,
is the Husimi-Q function

Qa(α) =
1
π
〈α|ρa|α〉, (3.13)

since it generates the anti-normally ordered moments

〈an(a†)m〉 =

∫
α

(α∗)mαn Qa(α) . (3.14)

Substituting Eq. (3.11) into the definition of the Q function, we note that it is related
to the P function by a Gaussian convolution. For coherent states Qa(α) becomes a
two-dimensional Gaussian distribution with variance 1 centered around the coherent
state amplitude. Half of these fluctuations describe the intrinsic vacuum fluctuations of
the quantum field, the other half describe the minimal added uncertainty when directly
measuring a Q function, which requires the simultaneous detection of two conjugate
field quadratures.

Both distributions are special cases of the s-parametrized quasi-probability distribu-
tion Wa(α, s)

Qa(α) = Wa(α,−1) (3.15)

Pa(α) = Wa(α, 1). (3.16)

which has been introduced by Cahill and Glauber [Cahill69a] as a generalized phase
space representation of the density matrix where the parameter s ∈ (−∞,+1]. For
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different values of s the quasi probability distributions are related to each other by a
Gaussian convolution [Cahill69a]

Wa(α, s) =
2π−1

t − s

∫
β

exp
(
−

2|α − β|2

t − s

)
Wa(β, t) (3.17)

where t > s.
An intuitive interpretation of the parameter s relates to the amount of fluctuations

which are contained in the distribution in units of half photons. For s = 0 we obtain
the Wigner function Wa(α) ≡ Wa(α, 0) which include the intrinsic vacuum fluctuations
but no additional noise due to measurement. In the case s = 1 we identify the P
function where even the vacuum fluctuations are not represented. On the other hand,
for s = −1 the quasi probability distribution corresponds to the Q function where both
the vacuum fluctuations and the minimal added detection noise are embedded. As
discussed below, additional classical detection noise leads to s < −1 when identifying
measured distributions with a generalized quasi probability distribution.

3.3.2 Identifying measured histograms with phase space
distributions

In order to understand the relation between generalized quasi probability distributions
and the measured histograms shown in Figure 3.7, we interpret D[|0〉〈0|], D[|1〉〈1|] as
estimates for the probability of measuring the observable Ŝ = a + h† with outcome
S . From such measured distributions all statistical moments in Ŝ can be numerically
evaluated as

〈(Ŝ †)nŜ m〉ρa =

∫
S

(S ∗)nS m D[ρa](S ) . (3.18)

If the noise added by the detection chain is independent of the signal generated by the
photon source, the signal mode a and the noise mode h are uncorrelated ρ = ρa ⊗ ρh.
Under this assumption the moments of the measured distribution can be decomposed
into products of signal and noise moments

〈(Ŝ †)nŜ m〉ρa =

m,n∑
i, j=0

(
n
j

)(
m
i

)
〈(h†)ih j〉〈am−i(a†)n− j〉,

(3.19)

Here, we have chosen an operator ordering where the signal moments 〈am(a†)n〉 appear
anti-normally ordered and the noise moments 〈(h†)mhn〉 normally ordered. Note that
since Ŝ is a normal operator [Ŝ , Ŝ †] = 0, one can express Eq. (3.19) also with opposite
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3 Characterizing quantum microwave radiation with linear detectors

ordering, as shown in Eq. (3.23) later in the text.
The probability distribution for the sum of two independent random variables a + h†

is identical to the convolution of the individual distributions for a and h†. As a result,
one possible representation of the probability distribution D[ρa](S ) is given by the
convolution [Kim97]

D[ρa](S ) =

∫
α

Ph(S ∗ − α∗)Qa(α). (3.20)

In the following we discuss special cases of Eq. (3.20). At optical frequencies the
measurement of Ŝ can be realized using a double homodyne or heterodyne detection
and the noise mode h is nearly in the vacuum state for which Ph(β) = δ(2)(β) resulting
in

D[ρa](S ) = Qa(S ). (3.21)

Thus, for ideal heterodyne detection the measured distribution corresponds to the Q
function. In contrast, for microwave fields the noise mode h is often in a thermal state
with mean photon number N0 ranging typically from 0.5 to 10 if parametric or SQUID
amplifiers are used [Mallet11, Vijay11, Kinion08] or between 30 an 200 if the first
amplification is performed by a transistor based amplifier [Bozyigit11, Eichler11b,
Eichler11a, Lang11]. In this case Ph(α) = e−|α|

2/N0/πN0 acts as a Gaussian filter and
by comparing with Eq. (3.17) we obtain the broadened quasi probability distribution

D[ρa](S ) = Wa(S ,−1 − 2N0). (3.22)

Note that finite thermal noise in h can be equivalently interpreted as optical homo-
dyne detection with finite detection efficiency η for which the measured distribution
is given by D[ρa](S ) = Wa(S , 1 − 2η−1) [Leonhardt93]. Added noise can thus be
understood as a reduced detection efficiency η = 1/(1 + N0).

We conclude that under the experimentally verified assumption [Eichler11b,
Menzel10] of h being in a thermal state not correlated with a the measured distribution
of Ŝ is a direct measurement of the generalized quasi probability distribution and
therefore contains all information required to reconstruct the density matrix ρa of the
state of interest or to test its nonclassical properties [Vogel00, Kiesel11]. In contrast
to other reconstruction schemes only a single observable Ŝ needs to be measured.

However, in many experiments the mean photon number of the noise field is larger
than the mean photon number of the signal field N0 > 〈a†a〉 and consequently the
features of measured probability distributions are on first sight dominated by the noise
distribution. Therefore the goal is to systematically extract the information contained
about mode a in the measured quasi probability distribution and represent it in a form,
which allows for a direct estimation of the properties of the state, such as the fidelity
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with respect to an expected density matrix.

3.3.3 Determination of normally ordered moments

One way of quantifying the properties of a quantum state is to analyze the statistical
moments 〈(a†)nam〉 of the field operator [Bužek96, Menzel10], since quantities such
as the mean amplitude, the mean photon number and the variance in the photon number
can be extracted immediately. In this section we discuss the approach developed in
Ref. [Eichler11b] to extract these moments from the measured distributions in the
presence of significant amplifier noise N0. The basic idea is to deconvolve the quasi
probability distributions for the field operators a and h order by order.

Rewriting Eq. (3.19) with a different choice of operator ordering

〈(Ŝ †)nŜ m〉ρa =

n,m∑
i, j=0

(
m
j

)(
n
i

)
〈(a†)ia j〉〈hn−i(h†)m− j〉,

(3.23)

we find that once the anti-normally ordered moments of the noise mode 〈hn(h†)m〉 are
known, the set of linear equations can be solved for 〈(a†)nam〉. A systematic method
to solve this system of equations analytically is provided in Appendix A.1. From
Eq. (3.18) we note that a reference measurement D[|0〉〈0|](S ), for which a is prepared in
the vacuum, gives direct access to the moments 〈hn(h†)m〉, since all normally ordered
moments in a with n,m , 0 are then 〈(a†)nam〉 = 0 and Eq. (3.23) reduces to

〈(Ŝ †)nŜ m〉|0〉〈0| = 〈hn(h†)m〉 . (3.24)

In cryogenic setups such a reference measurement with a in the vacuum can typically
be performed by cooling the source of radiation into the ground state or very close to it
[Fink10b]. The identity in Eq. (3.24) can be understood as follows: The situation with
a in the vacuum state corresponds to an ideal Q function measurement for the noise
mode h and the moments generated by this distribution are exactly the anti-normally
ordered ones appearing in Eq. (3.24). We finally invert Eq. (3.23) to extract the desired
moments 〈(a†)nam〉 of the mode to be characterized.

In principle, the moments of the measured histograms can be evaluated to arbi-
trary order. However, there are limitations in the accuracy with which the moments
〈(a†)nam〉 can be determined depending on the integration time and the detection
efficiency. As investigated theoretically in Ref. [daSilva10], the statistical error of
the moments increases with increasing order. The result shows that the number of
measurements which are necessary to extract a moment of order M with a given
precision scales with (1 + N0)M . The measurement time necessary to determine higher
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order moments with a fixed precision thus scales exponentially with increasing order.

The state of a single mode of the radiation field has an infinite number of degrees
of freedom, i.e. an infinite dimensional Hilbert space. This makes it in principle
impossible to exactly reconstruct a state, because an infinite amount of information is
to be acquired. However, the measurement of a finite set of moments often allows for
a controlled reduction of the relevant state space [Bužek96].

3.3.4 Special classes of states and the Fock space density matrix

One class of states which is characterized by a finite set of moments comprises
coherent, thermal and squeezed (i.e. Gaussian) states, for which the statistical moments
up to second order {

〈a〉 ,
〈
a†a

〉
,
〈
a2

〉}
. (3.25)

determine all higher order moments. In order to analyze how close the reconstructed
state really is to a Gaussian, one has to measure the third order cumulants and evaluate
their deviations from zero (for the relation between cumulants and moments see
Appendix A.1).

A second class of states which can be reconstructed using a finite set of measured
moments includes those with finite photon number contributions satisfying 〈n|ρa|m〉 =

0 for m, n ≥ N in the Fock basis {|n〉}. For these states the normally ordered moments〈
(a†)nam

〉
= 0 m or n ≥ N (3.26)

vanish and the state is completely determined by the finite set of moments{〈
(a†)nam

〉}
m and n ≤ N. (3.27)

It is important to note that it necessarily follows from 〈(a†)NaN〉 = 0 that there are no
Fock states |n〉 with n ≥ N contributing to the density matrix. If 〈(a†)NaN〉 < ε can be
verified experimentally one knows an upper bound

ε > 〈(a†)NaN〉 =
∑
n≥N

〈n|ρa|n〉
n!

(n − N)!
≥

∑
n≥N

〈n|ρa|n〉 (3.28)

for the sum of higher order Fock state populations. The approximation made when
truncating the Hilbert space is thus well-controlled.

If such a truncation is possible the moments can be mapped to a density matrix in
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Fock representation by evaluating the sum [Herzog96]

〈m|ρa|n〉 =
1
√

n!m!

∞∑
l=0

(−1)l

l!
〈(a†)n+lam+l〉

≡ M(〈(a†)nam〉) (3.29)

up to terms of order 2N.
The described procedure is very efficient since the evaluation of moments from the

measured distributions as well as finding the solution of Eq. (3.23) requires only small
computational effort. Furthermore the moment representation provides a very intuitive
picture to extract fundamental properties of the quantum state.

3.3.5 Reconstruction of single photon states

Based on the theoretical insights gained in the last two sections we are able to evaluate
the moments 〈(Ŝ †)nŜ m〉ρa and 〈(Ŝ †)nŜ m〉|0〉〈0| from the measured histograms shown
in Figure 3.7(a)-(b) and use them to determine the normally ordered signal moments
〈(a†)nam〉 up to the desired order, four in this case, as shown in Figure 3.8(a). We note
that the quadrature histograms are normalized such that the zeroth order moments are
always unity for all prepared states. The off diagonal elements in the moment matrix
express coherences between different photon number states. They vanish for states
with circular symmetric phase space distributions such as pure Fock states or thermal
states. For the Fock state |1〉 (Figure 3.8(a)), we observe that all off diagonal moments
are close to zero. In addition, we note that the fourth order moment 〈(a†)2a2〉 is also
close to 0 indicating antibunching of the prepared single photon states [Bozyigit11]. In
contrast, a thermal state with the same mean photon number would display vanishing
off diagonal moments but finite diagonal 4th order moments. Experimentally, for
the single photon Fock state, the aforementioned residual coherent admixture of the
vacuum state leads to a non-vanishing small mean amplitude |〈a〉| = 0.044 and a
slightly reduced mean photon number 〈a†a〉 = 0.91. For an integration time of 12
hours for each state, we find errors of the 4th order moments to be approximately ±0.1
where the statistical error in the moments is known to increase exponentially with
increasing order [daSilva10]. In comparison, the estimated statistical errors for the
first, second and third order moments are approximately 1.5 × 10−3, 4.5 × 10−3, and
1.5 × 10−2, respectively. The errors have been estimated from the standard deviation
of the moments acquired in repeated measurements of the distributions.

We have also prepared and analyzed superposition states of the type (|0〉+eiφ|1〉)/
√

2,
see Figure 3.8(b). The relative phase φ is controlled by the phase of the corresponding
qubit state that is mapped into the resonator. For this class of states, the mean amplitude
ideally equals the mean photon number |〈a〉| = 〈a†a〉 = 0.5. The first equality remains
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Figure 3.8: Absolute value of the normally ordered moments |〈(a†)nam〉| up to 4th order for
(a) a single photon Fock state, (b) a superposition state (|0〉 − |1〉)/

√
2, and two coherent states

with amplitude (c) α = 1, and (d) α = 0.5.

approximately valid even if the state is slightly mixed with the vacuum. We have
been able to use this property to determine the effective gain of our amplifier chain
because first and second order moments have a different characteristic scaling with
the gain. This allowed us to scale X and P axes of the histograms (Figure 3.7) such
that they correspond to the real and imaginary part of a + h†. From our measurement
data, we extract |〈a〉| = 0.466 which is close to the expected value. Note that this
determination of the effective gain is equivalent to a calibration of the system noise N0,
which is often realized using a blackbody radiation source with variable temperature
[Mallet11, Flurin12].

To further confirm the validity of our scheme, we have generated coherent states
|α〉 with amplitude α = 1 and α = 0.5 by applying 10 ns square coherent pulses with
controlled amplitude to the weakly coupled input port of the resonator. The moments
of coherent states are given by 〈(a†)nam〉 = (α∗)nαm. For α = 1 all moments are
observed to be close to 1 (Figure 3.8(c)), as expected. This also demonstrates that
systematic errors in the detection chain, such as small nonlinearities, are negligible
since all moments take their expected values. For α = 0.5 (Figure 3.8(d)), the measured
moments decay exponentially with 〈(a†)nam〉 = 0.5n+m, as expected. The fourth order
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(a) (b)

Figure 3.9: Wigner function W(α = X + iP) for (a) a single photon Fock state and (b) a
superposition state both reconstructed from the measured moments shown in Figure 3.8.

moments appear larger than the third order ones, due to their larger statistical error.
From the measured moments we have reconstructed the Wigner function W(α) for

a single photon Fock state and its superposition with the vacuum (Figure 3.9). It is
sufficient to evaluate [Haroche06]

W(α) =
∑
n,m

∫
d2λ
〈(a†)nam〉(-λ∗)mλn

π2n!m!
e−

1
2 |λ|

2+αλ∗−α∗λ

up to order n + m = 3 because 〈(a†)2a2〉 ∼ 0. In general, all higher order moments
with n + m ≥ 2N − 1 have to be zero if one diagonal moment 〈(a†)NaN〉 vanishes,
which follows from the fact that diagonal moments 〈k|(a†)nan|k〉 with n > k are zero
for Fock states |k〉.

The Wigner function of the single photon Fock state (Figure 3.9(a)) shows clear
negative values which indicate the quantum character of the observed state. The slight
shift of |〈a〉| = 0.044 from the phase space origin that we already observed in the raw
measurement data (Figure 3.7(c)) of the |1〉 state is also apparent in the reconstructed
Wigner function. The superposition state (|0〉 − |1〉)/

√
2 displayed in Figure 3.9(b) has

a finite mean amplitude which leads to the finite center of mass of the distribution. Still,
negative values in the distribution persist, illustrating the quantum coherence between
the |0〉 and |1〉 state. We have also varied the relative phase φ of the superposition
states and have observed the expected rotation of the Wigner function.

3.4 Maximum likelihood state estimation

Due to the unavoidable statistical imprecision in expectation values extracted from a
finite number of measurements, a direct mapping from the measurement data to the
desired state representation does not in general result in a completely positive density
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3 Characterizing quantum microwave radiation with linear detectors

matrix. Maximum-likelihood state estimation [Hradil04] aims to correct for that. In
this section we discuss two different maximum-likelihood procedures applicable to
complex amplitude detection schemes as relevant for the circuit QED experiments
under consideration. The first method is based on the experimentally determined
finite set of moments 〈(a†)nam〉 together with their respective standard deviations δn,m.
The second one estimates the density matrix directly from the measured probability
distributions.

3.4.1 Maximum-likelihood procedure based on measured moments

In order to find the most likely density matrix given a set of measured moments and
their respective standard deviations δn,m, we maximize the log-likelihood function (see
e.g. supplementary material of Ref. [Chow12])

LLog = −
∑
n,m

1
δ2

n,m
|〈(a†)nam〉 − Tr[ρa(a†)nam]|2 (3.30)

with respect to the elements of the density matrix ρa. The properties ρa ≥ 0 and
Trρa = 1 of the density matrix are included as constraints in the maximization of
Eq. (3.30). The standard deviations δn,m appear in the denominator of each term, such
that moments which are determined with low accuracy contribute to the log-likelihood
function with less weight.

This maximization problem can be formulated as a semi-definite program, for
which efficient numerical solutions exist [Vandenberghe96, Chow12]. Note that this
maximum likelihood scheme is particularly efficient for states which contain only few
photons since in this case only a finite set of moments is non-zero.

We have tested the described maximum-likelihood procedure based on experimental
data sets obtained in a circuit QED experiment. In addition to the generation of single
photon states [Eichler11b] we have prepared two photon Fock states and their coherent
superposition with the vacuum. The setup employed for these experiments and details
about the generation of the two-photon state generation are discussed in Section 5.2.
Note that for the reconstruction of two-photon states it is necessary to measure photon
correlations including moments up to sixth order. The accurate measurement of
〈(a†)3a3〉 – compared to previous measurements in which 〈(a†)2a2〉 had been the
highest order measured moment [Bozyigit11, Eichler11b, Lang11] – was enabled by
a Josephson parametric amplifier used as the first amplifier in the detection chain
[Castellanos-Beltran08, Eichler12b].

Based on the measured moments and their respective standard deviations up to
order n + m = 8 we reconstruct each density matrix by maximizing Eq. (3.30). In
order to demonstrate that higher order photon number populations are not relevant
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Figure 3.10: (a) Absolute value of the experimentally reconstructed density matrices
(grayscale) in comparison with the ideal ones (wireframes) for the four indicated quantum
states. (b) Measured density matrices transformed into their corresponding Wigner functions
W(x, p). The fidelities between ideal states |ψ〉 and measured density matrices are evaluated as
F = 〈ψ|ρ|ψ〉.

for the description of the state if one of the diagonal moments (a†)NaN〉 is measured
to be close to zero (compare Eq. (3.28)), we have chosen a Hilbert space with up to
four photon Fock states. The results (Figure 3.10(a)) show that only the zero, one
and two photon Fock states contribute to the reconstructed density matrices while
the higher Fock states stay unpopulated. A compromise between the size of the
Hilbert space and the likelihood of the reconstructed state may be found by applying
the Akaike or Bayesian information criterion [Guta12] to reduce the complexity
of the model used for reconstructing the state. In order to illustrate the quantum
character of the reconstructed states we have transformed the density matrices into
their corresponding Wigner functions [Eichler11b], which show negative values in all
four cases (Figure 3.10(b)).

We estimate the statistical error in the fidelities of the reconstructed density matrices
by repeating the likelihood maximization for resampled sets of moments [Řeháček08,
Chow12]. The resulting standard deviations of the resampled fidelities are below 2%
for all reconstructed states. The small statistical errors are due to the high overall
microwave detection efficiency of η = 0.19 of our setup in combination with the
large number of measurements exceeding 108 for all the shown density matrices.
Since high repetition rates of up to 10 MHz [Bozyigit11] are possible for circuit
QED experiments we believe that the maximum likelihood approach is well suited in
this context. However, in experiments for which only a small number of samples is
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3 Characterizing quantum microwave radiation with linear detectors

available alternative methods such as the Bayesian approach [Audenaert09, Dobek11]
may be advantageous compared to maximum likelihood procedures.

3.4.2 Iterative maximum-likelihood procedure based on measured
histograms

In addition to the moments based maximum likelihood scheme we formulate an
iterative procedure which estimates the density matrix directly from the measured
histograms. This reconstruction method is useful for photon states which contain a
large number of contributing Fock states and consequently a large number of non-
vanishing moments. In addition to this practical relevance it gives insight into the
interpretation of the measured probability distribution.

The measurement of a quantum observable can be described by a set of positive
operator valued measures (POVM) Π̂ j [Nielsen00], which have the property that the
probability p j for getting the respective measurement result is given by p j = Tr[ρΠ̂ j].
The operators Π̂ j need to be positive and hermitian but not necessarily projectors. In
the ideal case they form a decomposition of the Hilbert space

∑
j Π̂ j = 1. Preparing

and measuring a system in state ρ repeatedly will return each of the possible results f j

times. The most likely state ρML given this set of data is the one which maximizes the
likelihood function

L =
∏

j

Tr[ρΠ̂ j] f j . (3.31)

Note that in order to find a unique global maximum of L, it is a necessary condition
that an arbitrary density matrix can be constructed as a linear combination of Π̂ j. As a
counterexample, if the POVM are given by a complete orthogonal set of projectors
Π̂ j = | j〉〈 j| the ML function L is independent of the off-diagonal elements of ρ
expressed in the | j〉 basis. The maximization of L can thus only identify the most
likely diagonal density matrix elements 〈 j|ρ| j〉.

It is computationally demanding to directly determine ρML for high-dimensional
Hilbert spaces. However, the density matrix ρML can be found using iterative meth-
ods [Hradil04, Lvovsky04, Řeháček07, Lvovsky09]. In order to formulate the ML
iteration procedure we define the operator

R̂(ρ) =
∑

j

f j

Tr[ρΠ̂ j]
Π̂ j. (3.32)

The iterative method for updating the density matrix [Hradil04, Hradil97]

ρk+1 = NR̂(ρk)ρkR̂(ρk) (3.33)
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3.4 Maximum likelihood state estimation

with renormalization constant N , has shown good convergence towards ρML
[Lvovsky09]. As an initial condition for the iteration procedure one either chooses
the maximally mixed state ρ0 = 1/d, where d is the dimension of the reconstructed
Hilbert space, or constructs a more realistic initial condition by taking into account
the measured moments.

In a practical implementation where the phase space is discretized and the Hilbert
space is truncated to finite dimensions we might also be faced with the situation that
the POVM operators do not sum to the identity operator

∑
j Π̂ j = Ĝ , 1. In this

situation the iteration procedure can be modified as

ρk+1 = NĜ−1R̂(ρk)ρkR̂(ρk)Ĝ−1 (3.34)

to guarantee convergence towards the most likely density matrix [Hradil06,
Mogilevtsev07].

Iterative method for ideal complex amplitude detection

The method described above has been adapted to optical homodyne detection by
Lvovsky [Lvovsky04] in 2004 and is frequently used in experiments based on optical
homodyne tomography [Babichev04, Tipsmark11, Usuga10]. Here we adapt the
method to measurements of the complex amplitude operator Ŝ . We start with the case
of ideal detection, i.e. for the noise mode h being in the vacuum state.

As discussed in Section 3.3.2 the measured probability distribution in this case is
the Q function D[ρa](S ) = Qa(S ). The underlying set of POVMs Π̂S is thus defined by
the condition

Qa(S ) � Tr[ρaΠ̂S ]. (3.35)

Since the Q function can be written as the expectation value Qa(α) = 1
π 〈α|ρa|α〉 with

respect to coherent states |α〉 we identify the well-known result [Helstrom76]

Π̂S =α ≡ Π̂α =
1
π
|α〉〈α|. (3.36)

Here and in the following we have labeled the possible measurement results of Ŝ by α
to emphasize their relation to coherent states.

The coherent state projectors Π̂α have both the desired properties: They sum up
to the identity operator

∫
α

Π̂α = 1 and they allow for the construction of an arbitrary
density matrix as a linear combination of projectors

ρa = π

∫
α

Pa(α)Π̂α, (3.37)
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3 Characterizing quantum microwave radiation with linear detectors

compare with Eq. (3.11). Based on this knowledge we can directly apply the iteration
procedure Eq. (3.34).

Full state tomography thus requires the measurement of only a single observable
Ŝ which ideally projects onto coherent states. Due to the properties of coherent
states all information about the phase of the field necessary to reconstruct the off-
diagonal density matrix elements is contained in this measurement. This is one of the
reasons why the discussed detection scheme has great potential in microwave photon
field tomography – especially since the advent of nearly quantum-limited amplifiers
[Bergeal10a, Castellanos-Beltran08, Eichler11a, Hatridge11].

Iterative method for generalized complex amplitude detection

Due to noise added by amplifiers as well as finite radiation losses in waveguides
and microwave components the mode h is typically not described by the vacuum
but a thermal state with mean photon number N0. In the following we show how to
reconstruct the density matrix ρa in this situation. We keep the discussion as general
as possible and allow for mode h being in an arbitrary state described by ρh which can
be specified experimentally using a reference measurement.

Preparing the signal mode a in the vacuum state we can measure the Q function
of mode h since D[|0〉〈0|](α) = Qh(α∗). Applying the iterative maximum likelihood
scheme for ideal detection we reconstruct the most likely state for the noise mode ρh.
To account for this noise state in the reconstruction of ρa we identify the modified
POVM operators Π̂

[ρh]
α , which describe the measurement process under the condition

that the detection system is in state ρh. The result, which can be shown by verifying
the identity

Tr[ρaΠ̂
[ρh]
α ] � D[ρa](α)

Eq. (3.20)
=

∫
β

Ph(α∗ − β∗)Qa(β), (3.38)

between POVMs and the expected measured distribution (Appendix A.3), is

Π̂
[ρh]
α =

1
π

Th(α)ρ̃hT †h (α). (3.39)

Here we have defined the displacement operator Th(α) ≡ eαh†−α∗h and ρ̃h as the most
likely density matrix with respect to the reflected histogram Qh(−α∗). Note that since
displaced Fock states are orthonormal and complete [Wunsche91]∫

α
T (α)|m〉〈n|T †(α) = 1δn,m, (3.40)
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Figure 3.11: Diagonal matrix elements pn = 〈n|ρ̃h|n〉 of the detector state (dots) obtained
with the iterative maximum likelihood method from experimental data. The photon number
distribution is well described by a thermal distribution (solid line) with mean photon number
N0 ≈ 4.4. The inset shows the reconstructed density matrix with fidelity F = 95% of a
coherent state with α ≈ 1.7.

the relation
∫
α

Π̂
[ρh]
α = 1 holds for any valid detector state ρh. This leads to the

remarkable result that the reconstruction method is unbiased for arbitrary detector
states. The only two requirements for the method to apply are that the signal and noise
modes are uncorrelated ρ = ρa ⊗ ρh and that a can be cooled into the vacuum state
or any other known state. Both of these conditions can be realized experimentally to
good approximation as discussed before. In order to estimate the density matrix ρa we
can again apply the iterative method using Π̂

[ρh]
α as a set of POVMs.

We have applied the iterative maximum likelihood scheme to the same data sets
as presented in Fig.3.10 and found quantitative agreement between the two methods
to about 1%. As described in the following, we have tested the iterative method also
for a coherent state |α〉 with mean amplitude α ≈ 1.7, for which we expect higher
photon number states to be occupied. We first apply the iterative procedure to the
reference histogram which characterizes the detector state ρ̃h. Its diagonal elements
pn = 〈n|ρ̃h|n〉 are shown in Figure 3.11 as dots which are very well described by a
thermal distribution (solid line) with mean photon number N0 ≈ 4.4. The off-diagonal
elements (not shown) are all smaller than ε = 0.004. Therefore, the detection noise is
very well approximated by thermal noise. Taking into account the estimated detector
state ρ̃h we construct Π̂

[ρh]
α and iterate the maximum likelihood procedure for the

coherent state histogram. The resulting estimated density matrix ρa is shown in the
inset of Figure 3.11 and has a fidelity of F = 95% compared to an ideal coherent state.
We refer the loss of fidelity to low-frequency phase drifts of the microwave generator
during the accumulation of histograms.
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3 Characterizing quantum microwave radiation with linear detectors

Note that in order to reconstruct and express the density matrix of the detector state
ρ̃h with high accuracy we have to take into account a Hilbert space of a dimension
which is approximately 10 times the noise number N0. It is therefore numerically
challenging to implement the iterative procedure in cases where the noise number is
large. If this is the case one may preferably chose to work with the moments based
maximum likelihood method presented in the previous section.

3.5 Two channel detection and the positive P distribution

We have already pointed out that field quadrature measurement is the most commonly
used detection method for microwave frequency fields. Based on this detection prin-
ciple it has also been possible to experimentally realize Hanbury Brown Twiss-type
setups (Figure 3.12) where two instead of one complex amplitudes are measured
[Gabelli04, Menzel10, Mariantoni10, Bozyigit11, Lang11]. The advantage of such
a detection scheme is that ideally the system noise in the two detection arms is un-
correlated and only the signal mode a contributes to the cross-correlations between
the two output arms. In this section we provide a quantum optics description of a
generic two-channel microwave detection chain [Menzel10, Mariantoni10] as shown
in Figure 3.12. We formulate the main advantages of such a measurement setup and
show that under reasonable assumptions a direct measurement of a positive P distribu-
tion [Drummond80] is realized. This relation between the positive P distribution and
the two-channel detection scheme gives important insight into the general statistical
properties of the obtained measurement results.

3.5.1 Two-channel detection

The main difference between the one- and the two-channel setup depicted in Fig-
ure 3.12 is the additional beam splitter which splits the signal mode a into two equal
parts while introducing an additional mode v. As a result, the input modes at the two
amplifiers are given by (a ± v)/

√
23 and the total measured complex amplitudes Ŝ 1

and Ŝ 2 can be expressed as

Ŝ 1 = a + v +
√

2h†1,

Ŝ 2 = a − v +
√

2h†2, (3.41)

3Depending on the specific realization of the beam splitter, additional relative phase factors appear in
the beamsplitting transformation, see for example Section 3.6. This is, however, not relevant for the
following general discussion and we have chosen this specific beam splitter transformation.
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G

G

Figure 3.12: Two channel detector with radiation incident from input mode a. Each of the
beam splitter outputs has an individual amplification stage adding noise in modes h1 and h2.
In both channels the complex amplitude is measured [daSilva10, Bozyigit11].

where h1 and h2 are the modes accounting for the system noise of the two detection
chains. Under the assumptions justified below that (i) the mode v is in the vacuum state,
that (ii) all other modes are uncorrelated ρ = ρa ⊗ ρh1 ⊗ ρh2 , and that (iii) the noise has
no phase-coherence 〈hm

2 〉 = 0 = 〈hm
1 〉, ∀m > 0 we find the following cross-correlations

[daSilva10]

〈(Ŝ †1)mŜ n
2〉 = 〈(a†)man〉. (3.42)

The above assumptions require that (i) the open beam splitter port is connected to a
bath of zero temperature, that (ii) the signal is not correlated with the two completely
independent amplifier chains, and that (iii) the noise does not depend on the phase
defined by the reference local oscillator, all of which can in good approximation be
realized experimentally [Bozyigit11, Lang11].

This result is remarkable since under realistic conditions the above cross-
correlations completely describe the state of mode a independent of the detector
noise modes. This means that the scheme is largely independent of the choice of
amplifiers and noise sources, even if the noise constitutes the majority of the power in
the signals S 1, S 2. As we show in the following these properties can be understood in
terms of the positive P function representation [Drummond80].

3.5.2 The positive P function

The positive P function was introduced by Drummond and Gardiner [Drummond80]
as a theoretical concept for the solution of Fokker-Planck equations. In contrast to the
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3 Characterizing quantum microwave radiation with linear detectors

Wigner function and Glauber-Sudarshan P function it is completely positive and has
all properties of a genuine probability distribution. The positive P function P(α, β∗) is
defined as a non-diagonal expansion of the density matrix in the coherent state basis

ρa =

∫
α,β

P(α, β)
|α〉 〈β|

〈β|α〉
. (3.43)

Like the P function it generates the normally ordered moments of the field operator

〈(a†)man〉 =

∫
α,β

P(α, β)αn(β∗)m. (3.44)

Furthermore this four-dimensional probability distribution P(α, β∗) can be shown to
be positive, not unique and to exist for any quantum state [Drummond80]. To resolve
the problem of uniqueness one can resort to the canonical choice [Braunstein91] of
the positive P function which is given by

Pcan(α, β) =
1

4π
exp

(
−
|α − β|2

4

)
Qa

(
α + β

2

)
. (3.45)

While the positive P function is often considered artificial and only of theoretical rele-
vance, Braunstein et al. have shown that it can be interpreted as the probability distri-
bution for the simultaneous measurement of four quadrature variables [Braunstein91].
A scheme for an optical experiment was proposed by Agarwal [Agarwal94] based on
fourfold balanced homodyne detection. To our knowledge this scheme has so far not
been implemented, probably due to the significant experimental effort necessary at
optical frequencies.

3.5.3 Two channel detection as a measurement of the positive P
function

The scheme by Agarwal and the two channel microwave detection scheme in Fig-
ure 3.12 are equivalent up to the presence of the amplifier noise. Furthermore under
the assumptions made above about the noise, the observables Ŝ 1, Ŝ 2 generate the
normally ordered moments in the same way as the positive P function. It is thus
natural to assume that the probability distribution of the measurement data P(S 1, S 2)
is a positive P-representation of the input mode a. In appendix Appendix A.2 we
calculate this distribution and find

P(S 1, S 2) =
1
4

∫
β

Pa(β)Q1

(
S ∗1 − β

∗

√
2

)
Q2

(
S ∗2 − β

∗

√
2

)
. (3.46)
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where Q1,2(α) are the Q functions of the system noise modes h1, h2. When the noise
added to both channels is in a thermal state with mean photon number N0 Eq. (3.46)
simplifies to

P(S 1, S 2) =

exp
(
−
|S 1−S 2 |

2

4(N0+1)

)
4π(N0 + 1)

Wa

(S 1 + S 2

2
,−1 − 2N0

)
(3.47)

and for quantum limited detection, i.e. N0 = 0, to

P(S 1, S 2) =
1

4π
exp

(
−
|S 1 − S 2|

2

4

)
Qa

(S 1 + S 2

2

)
(3.48)

= Pcan (S 1, S 2) . (3.49)

The compelling result is that for quantum limited detection the measurement data
distribution corresponds to the canonical choice of the positive P-representation
Pcan(α, β). Moreover, we show in Appendix A.2.2 that the measured distribution is
always a positive P distribution

1
π

∫
S 1,S 2

P(S 1, S 2)
〈α|S 1〉〈S 2|α〉

〈S 2|S 1〉
= Qa(α) (3.50)

for any thermal populations N1, N2 in the detector noise modes. As a consequence, the
density matrix can be directly evaluated from the measured P(S 1, S 2) using Eq. (3.43)
even in the presence of significant thermal noise of unequal powers in the detection
chains. These results suggest that the measurement of a positive P distribution is
possible with current microwave frequency quadrature detection setups.

3.6 Hong-Ou-Mandel interference: Reconstruction of
two-photon NOON states

3.6.1 Two-photon interference at a beam splitter

When two identical single photons simultaneously impinge at the two input ports
of a beam splitter, they perfectly bunch together and leave the beam splitter as a
pair in either one or the other output port. This interference effect results from the
bosonic nature of photons and has first been observed experimentally by Hong, Ou and
Mandel in 1987 [Hong87]. Because of the absence of any classical analog, two-photon
interference is a fundamental manifestation of the quantum nature of electromagnetic
radiation.

Since the bunching of photons relies on their indistinguishability, two-photon
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Figure 3.13: Schematic of the experimental setup used for a two-photon interference exper-
iment. Two transmon-resonator systems, shown as their optical analog, are used to create
single photons on demand. The photons propagate in modes a′ and b′ towards a beam splitter
which is on the same chip as the two sources (gray area). Radiation in modes a and b at the
beam splitter output is linearly amplified, to measure the complex amplitudes S a = Xa + iPa

and S b = Xb + iPb in both channels.

interference has been experimentally studied in a variety of systems [Riedmatten03,
Kaltenbaek06, Beugnon06, Flagg10, Lettow10], to test the reliability and frequency
stability of single-photon sources. Interference at a beam splitter is also important
in the context of quantum information science. It provides a major building block in
linear optics quantum computation schemes [Knill01], and enables the realization of
quantum repeater nodes as well as the distribution of entanglement between spatially
separated atoms [Duan01, Moehring07, Hofmann12].

All existing two-photon interference experiments have thus far been realized with
photons at optical frequencies. Using a superconducting circuit setup, we have been
able to observe Hong-Ou-Mandel interference, for the first time, also with microwave
photons [Lang]. The sample used for these experiments consists of two on-demand
single-photon sources and a microwave beam splitter. All components are fabricated
on a single chip, as schematically shown in Figure 3.13. Each single-photon source is
realized as a transmon-resonator system, similar to the one described in Section 3.1,
while the beam splitter is implemented as a 90◦ hybrid [Pozar93, Bozyigit11].

The single photons incident to the beam splitter are generated on-demand and have
an exponentially decaying temporal envelop. The methods used for generating these
photons are described in Section 3.1. They propagate towards the beam splitter in
modes a′ and b′, respectively, such that the state incident to the beam splitter can be
written as

|ψin〉 = |11〉 = a′†b′† |00〉 .
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The beam splitter transformation [Pozar93]

a′ =
1
√

2
(ia − b)

b′ =
1
√

2
(−a + ib) (3.51)

relates the input modes a′ and b′ to the output modes a and b. Using this relation, we
find the output state vector

|ψout〉 =
1
2

(ia − b)†(−a + ib)† |00〉 =
i
2

(
(a†)2 + (b†)2

)
|00〉

∝
1
√

2
(|20〉 + |02〉), (3.52)

where we have dropped the irrelevant global phase factor i in the second line. The
photon fields are thus in a superposition state of two photons in one arm and two
photons in the other arm of the beam splitter output. An entangled state of this type
is called a two-photon NOON state [Kok02]. In its general form 1√

2
(|N0〉 + |0N〉) it

describes a superposition state, for which all N photons are either in one or the other
mode.

3.6.2 State reconstruction based on 4D histograms

Here, I discuss the experimental characterization of two-photon interference using
quantum state tomography. Combining the methods presented in Section 3.5 and
Section 3.3 we are able to measure all moments of type 〈(a†)nam(b†)kbl〉 for the
described experiment. These moments contain complete information about the relevant
photon statistics and correlations between the two spatially separated microwave fields.
They also enable a reconstruction of the joint density matrix ρ of the two mode state.

The tomography experiment is based on the measurement of four-dimensional
histograms in the field quadratures {Xa, Pa, Xb, Pb}. Note, that we use temporal mode
matching (Section 3.2.2) during the detection, in order to measure the field quadra-
tures with optimal efficiency. Each set {Xa, Pa, Xb, Pb} corresponds to an individual
measurement outcome of the observables

Ŝ a ≡ X̂a + iP̂a = a + h†a and Ŝ b ≡ X̂b + iP̂b = b + h†b, (3.53)

Here, ha and hb are independent modes accounting for the effective noise added in the
two detection channels.

Because of the limited memory storage of our FPGA board, the histograms are

71



3 Characterizing quantum microwave radiation with linear detectors

discretized into 16 bins per field quadrature. We record two histograms: One for
which the state of interest |ψout〉 is prepared D[|ψout〉〈ψout |], and one for which we leave
the photon sources turned off D[|00〉〈00|]. The second measurement acts as a reference
measurement for the noise in modes ha and hb. Based on these measured histograms,
we determine all relevant statistical moments by numerically evaluating the following
integrals

〈(Ŝ †a)nŜ m
a (Ŝ †b)kŜ l

b〉ρ =

∫
S a,S b

D[ρ] (S ∗a)nS m
a (S ∗b)kS l

b (3.54)

where D[ρ] are the measured histograms. In practice, the integration is realized as a
summation over all histogram bins. Taking into account that the fields a and b are not
correlated with the added noise in ha and hb, we decompose the statistical moments in
products of the following operator expectation values

〈(Ŝ †a)nŜ m
a (Ŝ †b)kŜ l

b〉ρ =
∑

w,x,y,z

(
n
w

)(
m
x

)(
k
y

)(
l
z

)
〈(a†)wax(b†)ybz〉〈hn−w

a (h†a)m−xhk−y
b (h†b)l−z〉.

(3.55)

Based on this equation and using an equivalent procedure as described in Section 3.3,
we can determine 〈hn

a(h†a)mhk
b(h†b)l〉 and 〈(a†)nam(b†)kbl〉 from the measured statistical

moments 〈(Ŝ †a)nŜ m
a (Ŝ †b)kŜ l

b〉[|ψout〉〈ψout |] and 〈(Ŝ †a)nŜ m
a (Ŝ †b)kŜ l

b〉[|00〉〈00|]. Details about
the efficient inversion of Eq. (3.55) are discussed in Appendix A.1.

3.6.3 Measurement results and interpretation

In a first experimental sequence we prepare two-photon NOON states by simultane-
ously generating pairs of single photon Fock states in the two cavities. The photon
generation is repeated every 600 ns, which allows us to record histograms from
∼ 3 × 1010 individual measurement results within approximately 10 hours. The data
points are stored in 32 different histograms to be able to determine also the standard
deviation of the extracted moments. Using the procedure described above, we evaluate
the moments 〈(a†)nam(b†)kbl〉 up to order n,m, k, l ∈ {0, 1, 2}. During the analysis we
take a residual thermal steady-state population of 0.03 in modes a and b into account.
The total gain of the detection chain is calibrated by preparing an equal superposition
state in only one mode, for which we expect half a photon in mode a′.

From the measurement data, shown in Figure 3.14(a), we find both mean amplitudes,
〈a〉 and 〈b〉, close to zero. This is expected, since each beam splitter output mode is in
a statistical mixture of either zero or two photons when analyzed individually. This is
also reflected in the second order moments, where we find the average photon number
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Figure 3.14: Measured (colored bars) and ideal (wireframes) moments 〈(a†)nam(b†)kbl〉 for
the prepared states 1

√
2
(|02〉 + |20〉) in (a) and 1

2 |00〉 + 1
√

2
|01〉 + 1

√
8
(|20〉 + |02〉) in (b).

in both channels close to one. The bunching of photons into pairs is explained by
the finite values of 〈(a†)2a2〉 and 〈(b†)2b2〉. Both would be zero, if there was only a
single photon in each output channel. The fact that 〈a†ab†b〉 is close to zero, shows
that there is never a photon in mode a, if there is one in b (and vice versa). Most
importantly, our experiment also demonstrates the quantum coherence of the prepared
state. Finding 〈a2(b†)2〉 close to the ideal value one, clearly verifies that we have
created a superposition of |02〉 and |20〉 instead of a mere statistical mixture between
the two states.

In a second experiment, we demonstrate that we can also prepare and detect co-
herences in the individual channels. To this aim we prepare the beam splitter input
field

|ψin〉 =
1
2

(|0〉 − |1〉) ⊗ ((|0〉 + i |1〉)) =
1
2

(1 − a†)(1 + ib†) |00〉 (3.56)
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Using the beam splitter transformation in Eq. (3.51) we find

|ψout〉 =
1
4

(
√

2 + ia† + b†)(
√

2 − ia† + b†) |00〉

=
1
2
|00〉 +

1
√

2
|01〉 +

1
√

8
(|20〉 + |02〉), (3.57)

for the expected output state. Also for this prepared state, the measured moments
are in good agreement with the expected ones, as shown in Figure 3.14(b). We note
that the output fields are no longer symmetric in modes a and b. For the specific
relative phase between the input superposition states, photons leave the beam splitter
predominantly in mode b. Ideally, 0.75 average photons leave the beam splitter in
mode b and only 0.25 average photons in mode a. Furthermore, the mean amplitude
〈b〉 is finite, while 〈a〉 is ideally zero. The finite measured value of 〈a〉 is explained
by relative phase drifts during the measurement time of a few hours. The agreement
between theory and experiment in the third and fourth order terms, shows that our
measurement scheme is able to accurately detect all types of coherences between
different Fock states.

We have also reconstructed the most likely density matrix ρ for the two mode state
from our measurement data. In analogy to Eq. (3.29), we find the following relation
between the moments and the density matrix in the Fock basis

〈ml|ρ|nk〉 =
∑
j,i=0

(−1)i+ j 〈(a
†)n+ jam+ j(b†)k+ibl+i〉
√

n!m!k!l! j!i!
(3.58)

Since we have verified the single-photon character of each individual source, we can
to very good approximation neglect potential 3-photon contributions in the measured
fields. Based on this assumption, we reconstruct the density matrix in the finite two-
photon Hilbert space {|0〉 , |1〉 , |2〉}⊗2. The density matrix in this finite-dimensional
Hilbert space is completely determined by the moments 〈(a†)nam(b†)kbl〉 up to order
n,m, k, l ∈ {0, 1, 2}. Based on the linear map in Eq. (3.58), we maximize the log-
likelihood function in Eq. (3.30) to find the most likely density matrix, given the
measured moments and their respective standard deviations. The real part of the
resulting density matrices is shown in Figure 3.15 for both prepared states. The
imaginary density matrix elements are all smaller than 0.03. Both states have a fidelity
of F = 〈ψout|ρ|ψout〉 ≈ 85% compared to the ideal ones. As a measure of entanglement
between the two fields we have also evaluated the negativity [Vidal02]. We find
N(ρ) = 0.39 for the reconstructed two-photon N00N state, which has to be compared
to N = 0 for unentangled states and N = 0.5 for maximally entangled states.

In summary, we have demonstrated a detailed characterization of microwave two-
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Figure 3.15: Measured (colored bars) and ideal (wireframes) density matrix ρ for the prepared
states 1

√
2
(|02〉 + |20〉) in (a) and 1

2 |00〉 + 1
√

2
|01〉 + 1

√
8
(|20〉 + |02〉) in (b). The fidelity of both

reconstructed states is F ≈ 85%.

photon interference using linear detection methods. Our results imply that we can
generate single photons and their superposition with the vacuum with high frequency
stability. The demonstration of entanglement between the two spatially separated
propagating fields may turn useful in future quantum communication experiments
with microwaves.
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Chapter 4
Parametric amplification and
vacuum noise squeezing

The main limitation for the performance of the measurements presented in the previous
chapter was the noise added during amplification, which reduced the effective detection
efficiency to a few percent. While we have developed sensitive methods to take
the presence of this noise into account when characterizing quantum microwave
radiation, it is still desirable to have detectors which work closer to the quantum
limit. This is not only essential for accessing higher order field correlations, as
demonstrated in Section 3.4.1, but moreover a requirement for quantum feedback and
post-selection based experiments [Wiseman10, Vijay12, Johnson12, Ristè12c]. An
improved amplifier increases the signal-to-noise ratio and thus boosts the experimental
performance in general. As an example, a significant enhancement of the measurement
precision using quantum-limited amplifiers have recently been demonstrated in the
context of nanomechanical resonators [Teufel11] and in magnetometry [Hatridge11].

The most successful quantum limited detectors which have so far been realized in
the microwave frequency range are based on the principle of parametric amplification
[Louisell61, Gordon63, Mollow67, Clerk10]. This amplification process has been
used also in quantum optics to generate entangled photon pairs [Burnham70] and
squeezed states [Slusher85, Wu86] and was first investigated in electrical circuits oper-
ating at microwave frequencies by Yurke et al. [Yurke87, Yurke88]. Due to the rapidly
evolving field of superconducting circuits the interest in low-noise amplifiers has
dramatically increased recently and has lead to a revival of Josephson junction based
amplifiers in the past years [Yurke06, Castellanos-Beltran07, Tholén07, Yamamoto08,
Castellanos-Beltran08, Kamal09, Bergeal10b, Hatridge11, Eichler11a, Abdo13].

Here, I describe the development of such a parametric amplifier in our lab at ETH
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4 Parametric amplification and vacuum noise squeezing

Zurich for the use in circuit QED applications. After a discussion of basic concepts, I
derive all relevant relations between microscopic system parameters and characteristic
amplifier properties. The present chapter shall also act as a guide for building and
operating a parametric amplifier with good gain characteristics. We characterize
the parametric amplifier experimentally, and demonstrate its near quantum limited
performance by measuring entanglement correlations between the signal and idler
noise emitted from the device. These squeezing correlation could also act as a resource
for future continuous variable quantum optics experiments [Braunstein05].

4.1 Principles of parametric amplification

4.1.1 Parametric processes at optical and microwave frequencies

In quantum optics the term ’parametric’ is used for processes in which a nonlinear
refractive medium is employed for mixing different frequency components of light.
Such processes are parametric in the sense that a coherent pump field, applied to a
nonlinear medium, modulates its refractive index, which appears as a parameter in a
semi-classical treatement. This time-varying parameter is affecting modes which are
detuned from the pump and can stimulate their population with photons. The energy
for creating these photons is provided by the pump field.

Predominantly, the frequency conversion is either realized as a three-wave mixing
process in media with χ(2) nonlinearity or as a four-wave mixing process in media with
χ(3) nonlinearity. In a three-wave mixing process one pump photon with frequency ωp

is converted into a pair of signal ωs and idler ωi photons obeying energy conservation
ωp = ωi + ωs. Four-wave mixing describes the conversion of two pump photons into
a pair of signal and idler photons 2ωp = ωs + ωi. If the signal and idler modes are
initially in the vacuum state such processes are called spontaneous parametric down-
conversion and spontaneous four wave mixing [Burnham70]. This phenomenon is
abundantly used for creating heralded single photons, i.e. single photons conditioned
on a photon counting event.

In order to enhance the production rate of signal and idler pairs one can place the
nonlinear medium inside a cavity to form an optical parametric oscillator [Slusher85].
The emitted signal and idler photons are perfectly correlated which results in squeezing.
Since the conversion from pump photons into signal and idler pairs is stimulated by
already existing fields the described phenomenon is an amplifying process, which we
call parametric amplification.

The refractive index in optics is equivalent to the impedance of electrical circuits.
In order to realize parametric processes at microwave frequencies we therefore have to
modulate an effective impedance. This can be achieved by varying either a capacitive
or an inductive element in time. Although there have been early proposals for fast
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4.1 Principles of parametric amplification

time-varying capacitances [Louisell60], it nowadays seems more convenient to make
use of dissipationless Josephson junctions for this purpose. In a regime in which the
current I flowing through a Josephson junction is much smaller than its critical current
IC ≡ 2eEJ/~ its associated inductance is approximately L ≈ LJ(1 + 1

6 (I(t)/IC)2).
Applying an AC current through the junction using appropriate microwave drive fields
therefore leads to the desired time-varying impedance. Because of the proportionality
of the inductance L to the square of the current I2(t), such a drive results in a four-wave
mixing process.

The effective impedance can alternatively be modulated by varying the magnetic
flux enclosed by a SQUID loop [Yamamoto08] such that the effective inductance
is approximately modulated proportionally to the AC current I(t) in the loop, L ≈
LJ(1 + I(t)/I0). The quantity I0 in this expression depends on the DC flux bias point
of the SQUID loop. Since the relation between current and inductance is in this case
linear, the magnetic flux drive results in a three-wave mixing process.

In order to enhance parametric amplification in a well-controlled frequency band
while suppressing it for frequencies out of this band, one can place the modulated
Josephson inductance inside a resonator. This is the simplest way to control the band
in which parametric amplification occurs. A number of variations of this basic idea
are now explored. The circuit topology has recently been modified to achieve a spatial
separation of signal and idler modes [Bergeal10a, Bergeal10b, Bergeal12, Roch12,
Flurin12] and to build traveling wave amplifiers, in which a field is amplified while
propagating in forward direction coaxially with a pump field [Ho Eom12]. Various
drive mechanisms ranging from single and double pumps [Kamal09] to magnetic flux
drives [Yamamoto08, Wilson11] have been explored1. Being aware of this variety of
possible approaches, we focus on the specific implementation we have chosen in the
following. It is the realization of a single mode parametric amplifier driven with one
pump tone.

4.1.2 A circuit QED implementation of a parametric amplifier

Our parametric amplifier consists of a λ/4 transmission line resonator shunted by an
array of SQUIDs (Figure 4.1(a)). The use of SQUIDs instead of single junctions
provides us with tunability of the resonance frequency as already discussed in the
context of the transmon qubit. Since parametric amplifiers typically provide ampli-
fication in a narrow band only, tunability is highly desirable to match the band of
amplification with the frequency of the signal to be amplified. The Josephson energy
per SQUID is approximately a thousand times larger (0.5 − 5 THz in units of the
Planck constant h) compared to that of typical transmon junctions. Consequently,

1Note that there is a close analogy between parametric amplification and the dynamical Casimir effect
[Johansson09, Wilson11].
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Figure 4.1: (a) Circuit schematic of the parametric amplifier. For details see text. (b) Optical
analog of the system. (c) False colored optical micrograph of the sample with an enlarged
picture of the SQUID array.

the effective anharmonicity of the parametric amplifier is much smaller and we can
account for it by adding a small Kerr nonlinear term to the system Hamiltonian, as
indicated in Figure 4.1(b). A weak nonlinearity is advantageous when aiming for
parametric amplification with high dynamic range, as discussed in Section 4.2.3.

The ground plane and inner conductor of the resonator are made of niobium (Nb)
while the SQUIDs are fabricated with aluminium (Al), see Figure 4.1(c). The overlap
areas between the most left and right SQUIDs and the inner conductor and ground
plane, respectively, are chosen sufficiently large (700µm2) in order to avoid effects
due to finite capacitances at the aluminium/niobium interface . As a consequence, the
associated contact impedance is effectively zero at the relevant microwave frequencies
even if there is no DC contact between aluminium and niobium.

The resonator is coupled with capacitance Cκ to a transmission line where input
and output modes are spatially separated using a circulator (Figure 4.1(a)). A 20 dB
directional coupler between the λ/4-resonator and the circulator is used to feed in
the pump field required for modulating the SQUID inductance. The second port of
the directional coupler is used to cancel out the pump tone reflected from the sample
interferometrically (for details about the cancelation method see Appendix A.5). The
capacitance Cκ determines the quality factor of the resonator and with it the band in
which parametric amplification occurs2.

An optical analog of the setup is shown in Figure 4.1(b). The Kerr nonlinearity
represents the effective nonlinear ’refractive index’ of the medium inside the cavity
with an effective χ(3) nonlinearity. When driving this nonlinearity with a coherent
pump field, we achieve a conversion of pump photons into fields detuned from the
pump. All parametric effects we consider here are captured by this nonlinear oscillator
model.

2Capacitances have been simulated with the finite element software Ansoft Maxwell as described in
Appendix A.7.
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4.1.3 Regimes of a driven nonlinear oscillator

The relevant part of the Hamiltonian which describes the parametric amplifier consid-
ered here can be written as

HJPA = ~ω̃0A†A + ~
K
2

(A†)2A2, (4.1)

where the subscript JPA stands for ’Josephson parametric amplifier’ [Yurke87] and
A labels the annihilation operator of the intra-resonator field. Expressions for the
resonance frequency ω̃0/2π and the effective Kerr nonlinearity K are derived in
Section 4.3 based on the full circuit model. Our devices are designed to have typical
nonlinearities on the order of K/ω̃0 ≈ 10−6 or smaller. In the following section
we analytically study the dynamics of this system using input-output formalism.
Before going into the mathematical derivations, I qualitatively describe different
dynamical regimes of this nonlinear oscillator and explain the mechanism which leads
to amplification. Many of the important device properties can be understood from its
classical response to a coherent drive field.

If we assume for the moment that the amplifier has no internal losses, all the incident
power has to be reflected from the device and the classical response is completely
specified by the phase ϕ of the reflected field. We can directly measure this phase, for
example with a network analyzer. In contrast to a linear system, where ϕ only depends
on the probe frequency ω/2π, it also depends on the power of the probe field in the
case of a nonlinear oscillator. In Figure 4.2(a), the theoretically expected value of ϕ is
plotted as a function of the probe amplitude for two characteristic drive frequencies
(blue and red). While for low drive powers the phase is constant (quasi-linear response)
the phase changes significantly for increased drive power. Depending on the probe
frequency we either get into a bistable regime (red) where two stable solutions exist
[Dykman80, Marthaler06] or into a regime where the phase has a unique solution
(blue). In both cases the phase significantly depends on the input power. The bistable
response can for example be used to build a bifurcation amplifier [Siddiqi04, Vijay09]
and for nonlinear dispersive readout [Mallet09], which has been intensely studied in
the context of circuit QED.

Since we are particularly interested in linear amplification the following discussion
is focused on the regime, in which the response has a unique solution (blue). The
mechanism of amplification can be understood qualitatively in the following way. If
we imagine that the device is constantly driven at a frequency and power at which the
reflected phase ϕ depends sensitively on power (see gray circle in Figure 4.2(a)), the
system will strongly react to small perturbations. Such perturbations, which could
e.g. be caused by an additional small signal field, are therefore translated into a large
change of the system response.
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Figure 4.2: (a) Phase of the reflected probe signal for varying drive powers and two character-
istic drive frequencies (blue and red). (b) Illustration of the nonlinear oscillator response in
the quadrature plane. The blue circle describes various input field configurations close to the
one indicated by the gray circle in (a). Due to the nonlinear response of the resonator they
result in the output fields indicated by the red ellipse.

We illustrate this amplifying effect by plotting the device response in the quadrature
plane to input fields with slightly varying amplitude and phase. In Figure 4.2(b) we
indicate these different input fields as a blue circle around their mean value (arrow).
The small differences in amplitude of the input fields translate into a large change in ϕ
of the output field (red ellipse). If we interpret the arrow in Figure 4.2(b) as a constant
pump and its difference to the points on the blue circle as an additional signal, the
signal is either amplified or deamplified depending on its phase relative to the pump.

The mechanism of amplification can thus already be understood by investigating
the nonlinear response to a monochromatic drive field. In order to characterize the
exact behavior of input fields with finite bandwidth we have to analyze the response
in more detail. This also allows us to understand how to use the parametric amplifier
in a phase-insensitive mode where both quadratures of an input signal are amplified
equally, independent of the relative phase to the pump tone.

4.2 Input-Output relations for the Parametric amplifier

4.2.1 Classical nonlinear response

Here, we employ the input-output formalism [Gardiner85, Walls94] to calculate the
nonlinear resonator response, which has already been discussed qualitatively in the
previous section. The derivation is along the lines of Ref. [Yurke06]. A schematic of
the input output model is shown in Figure 4.3. Based on Eq. (2.16) and the parametric
amplifier Hamiltonian in Eq. (4.1) we obtain the following equation of motion for the
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intra-resonator field

Ȧ = −iω0A − iKA†AA −
κ + γ

2
+
√
κAin(t) +

√
γbin(t). (4.2)

In addition to the coupling to transmission line modes Ain(t) with rate κ we account
for potential radiation loss mechanisms by introducing the coupling to modes bin(t)
with loss rate γ (compare Figure 4.3(a)). A boundary condition equivalent to

Aout(t) =
√
κA(t) − Ain(t), (4.3)

also holds for the loss modes. When operating the device as a parametric amplifier,
the input field Ain is typically a sum of a strong coherent pump field and an additional
weak signal field. Since this signal carries at least the vacuum noise to the resonator
we have to treat it as a quantum field. We account for this particular situation in this
formalism by decomposing the total field modes into sums of a classical part and a
quantum part

Ain(t) = (ain(t) + αin) e−iωpt , Aout(t) = (aout(t) + αout) e−iωpt,

A(t) = (a(t) + α) e−iωpt (4.4)

where α, αin, αout represent the classical parts of the field which are associated with
the pump, while a, ain, aout account for the additional signal fields. Since all α’s are
complex numbers the modes a satisfy the same bosonic commutation relations as
modes A do. By multiplying the field modes defined in Eq. (4.4) with the additional
exponential factor e−iωpt we chose to work in a frame rotating at the pump frequency
ωp. Our strategy is to first solve the classical response for the pump field α exactly
and then linearize the equation of motion for the weak quantum field a in the presence
of the pump. Finally, this leads to a scattering relation between input modes ain and
reflected modes aout.

The steady state solution for the coherent pump field is determined by(
(i(ω̃0 − ωp) +

κ + γ

2

)
α + iKα2α∗ =

√
καin, (4.5)

which follows immediately by substituting Eq. (4.4) into Eq. (4.2) and collecting only
the c-number terms. By multiplying both sides with their complex conjugate we get
the equation(ωp − ω̃0

κ + γ

)2

+
1
4

 |α|2 − 2(ωp − ω̃0)K
(κ + γ)2 |α|4 +

(
K

κ + γ

)2

|α|6 =
κ

(κ + γ)2 |αin|
2, (4.6)

83



4 Parametric amplification and vacuum noise squeezing

which determines the average number of pump photons |α|2 in the resonator. Eq. (4.6)
reduces to

1 = (δ2 +
1
4

)n − 2δξn2 + ξ2n3, (4.7)

by defining the scale invariant quantities

δ ≡
ωp − ω̃0

κ + γ
, α̃in ≡

√
καin

κ + γ
, ξ ≡

|α̃in|
2K

κ + γ
, n ≡

|α2|

|α̃in|2
. (4.8)

δ represents the detuning between pump and resonator frequency in units of the total
resonator linewidth, α̃in is the dimensionless drive amplitude, and ξ is the product
of drive power and nonlinearity, also expressed in dimensionless units. Finally, n
represents the mean number of pump photons in the resonator relative to the incident
pump power. As an important consequence, we notice from Eq. (4.8) that only the
product of drive power and nonlinearity influences the dynamics but not each quantity
itself. A small nonlinearity can therefore always be compensated by increasing the
drive power. Properties such as the gain-bandwidth product are therefore independent
of the strength of the nonlinearity3. Furthermore, the solutions to Eq. (4.8) for negative
ξ values are identical to those for positive ξ up to a sign change in δ. Since ξ is negative
for the Josephson parametric amplifier, we focus on this particular case.

Eq. (4.7) is a cubic equation in n and can therefore be solved analytically. We do not
write down the lengthy solutions here explicitly, but assume in the following that we
have an explicit analytical expression for n in terms of δ and ξ. In Figure 4.3(b) we plot
n for various parameters ξ as a function of δ. At the critical value ξcrit = −1/

√
27 the

derivative ∂n/∂δ diverges and thus the response of the parametric amplifier becomes
extremely sensitive to small changes. For even stronger effective drive powers ξ/ξcrit >

1 the cubic equation in Eq. (4.7) has three real solutions. The high and low solutions
to the photon number are stable while the intermediate one is unstable. The system
bifurcates in this regime as mentioned earlier. The critical detuning below which the
system can become bistable is δcrit = −

√
3/2. The critical point (ξcrit, δcrit) is the one

at which both ∂δ/∂n and ∂2δ/∂2n vanish. In the scale invariant units the maximal
value of n is always 4, which is reached at the detuning δ = 4ξ.

Experimentally, the device properties are characterized by measuring the complex
reflection coefficient Γ ≡ αout/αin. Based on the input-output relation αout =

√
κα−αin

and Eq. (4.5) we can evaluate this reflection coefficient as

S 11 ≡ Γ =
κ

κ + γ

1
1
2 − iδ + iξn

− 1. (4.9)

3Note that there are practical limitations, such as heating in the setup or upper limits in the fabrication
of Josephson junctions sizes, which also affect the choice of parameters
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with absolute square

|Γ|2 =
( κ
κ+γ −

1
2 )2 + (δ − ξn)2

1
4 + (δ − ξn)2

. (4.10)

In Figure 4.3(c) we plot the expected reflection coefficient at ξ = ξcrit for various
loss rates γ. For vanishing losses γ = 0 all the incident drive power is reflected from
the device and |Γ| = 1. Note that also in this case the resonance is clearly visible in the
phase of the reflected signal (not shown here). When the loss rate γ becomes similar
to the external coupling rate κ part of the radiation is dissipated into the loss modes.
In the case of critical coupling γ = κ all the coherent power is transmitted into the loss
modes at resonance. This is equivalent to the case of a symmetrically coupled λ/2
resonator, for which the transmission coefficient is also one at resonance [Göppl08].

4.2.2 Linearized response for additional weak (quantum) signal
fields

Under the assumption that the photon flux associated with the signal 〈a†inain〉 is much
smaller than the photon flux of the pump |αin|

2, we can drop terms such as Ka†aα,
because they are small compared to the leading terms Ka†αα and Kaα∗α. It is thus
valid to linearize the equation of motion for a in the presence of the pump field. By
substituting Eq. (4.4) into Eq. (4.2) and keeping only terms which are linear in a we
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4 Parametric amplification and vacuum noise squeezing

get

ȧ(t) = i
(
ωp − ω̃0 − 2K|α|2 + i

κ + γ

2

)
a(t) − iKα2a†(t) +

√
κain(t) +

√
γbin(t). (4.11)

Since Eq. (4.11) is linear, we can solve it by decomposing all modes into their Fourier
components

a(t) ≡

√
κ + γ

2π

∫ ∞

−∞

d∆ e−i∆(κ+γ)t a∆ (4.12)

and equivalently for ain,∆ and bin,∆. Note that ∆, the detuning between signal frequen-
cies and the pump frequency, is expressed here in units of the linewidth κ + γ. It is
thus dimensionless equivalently to δ. Substituting the Fourier decompositions into
Eq. (4.11) and comparing the coefficients of different harmonics, results in

0 =

(
i(δ − 2ξn + ∆) −

1
2

)
a∆ − iξne2iφa†

−∆
+ c̃in,∆, (4.13)

where

c̃in,∆ ≡

√
κain,∆

κ + γ
+

√
γbin,∆

κ + γ
(4.14)

describes the sum of all field modes incident on the resonator. Furthermore, φ in
Eq. (4.13) is the phase of the intra-resonator pump field, defined by α = |α|eiφ. The
fact that Eq. (4.13) couples modes a∆ and a†

−∆
can be interpreted as a wave mixing

process. In order to express a∆ in terms of the input fields cin,∆ we rewrite Eq. (4.13)
as a matrix equation(

c̃in,∆

c̃†in,−∆

)
=

(
i (−δ + 2ξn − ∆) + 1

2 iξnei2φ

−iξnei2φ i (δ − 2ξn − ∆) + 1
2

) (
a∆

a†
−∆

)
. (4.15)

By inverting the matrix on the right hand side we can express the fluctuating parts of
the intra-resonator field a∆ in terms of the incoming fields c̃in,∆

a∆ =
i (δ − 2ξn − ∆) + 1

2

(i∆ − λ−)(i∆ − λ+)
c̃in,∆ +

−iξne2iφ

(i∆ − λ−)(i∆ − λ+)
c̃†in,−∆

(4.16)

with
λ± =

1
2
±

√
(ξn)2 − (δ − 2ξn)2. (4.17)
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4.2 Input-Output relations for the Parametric amplifier

Using Eq. (4.3), we identify the final transformation between input and output modes

aout,∆ = gS ,∆ain,∆ + gIa
†

in,−∆
+

√
γ

κ
(gS ,∆ + 1)bin,∆ +

√
γ

κ
gI,∆b†in,−∆

(4.18a)

γ/κ→0
= gS ,∆ain,∆ + gIa

†

in,−∆
(4.18b)

where we have defined

gS ,∆ = −1 +
κ

κ + γ

i (δ − 2ξn − ∆) + 1
2

(i∆ − λ−)(i∆ − λ+)

gI,∆ =
κ

κ + γ

−iξne2iφ

(i∆ − λ−)(i∆ − λ+)
. (4.19)

Eq. (4.18b) represents the central results of this calculation. It says that the output
field at detuning ∆ from the pump frequency is a sum of the input fields at frequencies
∆ and −∆ multiplied with the factors gS ,∆ and gI,∆, respectively. The additional noise
contributions introduced via the loss modes bin,∆ vanish in the limit γ/κ → 0. In this
ideal case γ = 0, the coefficients gS ,∆ and gI,∆ satisfy the relation

G∆ ≡ |gS ,∆|
2 = |gI,∆|

2 + 1 (4.20)

and Eq. (4.18b) is identical to a two-mode squeezing transformation [Braunstein05,
Clerk10] with gain G∆. The two-mode squeezing transformation describes a
phase-insensitive linear amplifier in its minimal form (compare Eq. (3.1) and
Refs. [Caves82]), of which we discuss characteristic properties in the following
section.

4.2.3 Gain, bandwidth, noise and dynamic range

For simplicity we consider the case of no losses γ = 0, for which the parametric
amplifier response is described by Eq. (4.18b). The output field at detuning ∆ from
the pump aout,∆ is a sum of the fields at frequencies ∆ and −∆ at the input. Both parts
are scaled by the frequency dependent complex factors gS ,∆ and gI,∆, respectively.
An incoming signal at detuning ∆ is thus amplified by the power gain G∆ = |gS ,∆|

2

and mixed with the frequency components at the opposite detuning from the pump.
Characteristic properties of the parametric amplifier, such as the maximal gain and
the bandwidth, are thus encoded in the quantity gS ,∆ as a function of pump-resonator
detuning δ, effective drive strength ξ and detuning between signal and pump ∆.

In Figure 4.4(a) we plot the gain G0 for zero signal detuning ∆ = 0 as a function
of δ and ξ. We find that the maximal gain increases with increasing drive strength
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Figure 4.4: (a) Parametric amplifier gain G = |gS ,∆|
2 vs. pump tone detuning δ and drive

strength ξ at zero signal detuning ∆ and for κ = γ. For increasing drive strength ξ the detuning
for maximum gain is indicated by the dashed white line. A cut through the data for the highest
value ξ = 0.98ξcrit is shown as the solid white line in the bottom part. (b) Gain as a function of
signal detuning ∆ for the indicated drives strengths ξ/ξcrit and optimal pump detuning. The
exact gain curves (solid lines) are well approximated by Lorentzian lines (black dashed lines).

ξ while the optimal value for δ at which this gain is reached, shifts approximately
linearly with increasing ξ. The optimal values for δ are indicated as a dashed white
line in Figure 4.4(a). Mathematically, the gain diverges when ξ approaches the critical
value ξcrit. In practice, the gain is limited to finite values due to the breakdown of the
stiff pump approximation (see discussion below).

By changing the pump parameters ξ and δ we can adjust the gain G0 to any desirable
value up to typically more than 30 dB. Note that the gain can become smaller than one,
in the presence of finite internal losses γ > 0 . Once the pump parameters are fixed we
can characterize the bandwidth of the amplifier by analyzing the gain as a function
of the signal detuning ∆. In Figure 4.4(b) we plot the gain as a function of ∆ for the
indicated values of ξ/ξcrit and the corresponding optimal pump detunings δ (compare
dashed white line in (a)). When the gain is increased, the band of amplification
becomes narrower. This is quantitatively expressed by the gain bandwidth relation
√

G0B ≈ 1, where B is the detuning ∆ for which the gain reaches half of its maximal
value. Remember that ∆ is defined in units of the resonator linewidth κ + γ, which
means that the amplifier bandwidth equals approximately the resonator linewidth
divided by the square root of the gain. The gain curves are well approximated
by Lorentzian lines as indicated by the dashed black lines in Figure 4.4(b). This
Lorentzian approximation becomes better with increasing gain.

The gain-bandwidth relation suggests that the amplifier bandwidth can be increased
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4.2 Input-Output relations for the Parametric amplifier

by lowering the total quality factor of the resonator. There are, however, several
technical challenges to overcome when increasing the bandwidth. One of them is
closely related to the dynamic range of the amplifier. In the derivation made in the
previous sections we have assumed that the solution of the classical drive field is
unaffected by the additional signal and quantum fluctuations at the input. This is called
the stiff pump approximation [Kamal09], which assumes that the pump power at the
output is equal to the pump power at the input. This is of course an approximation,
since the pump field provides the energy which is necessary for amplifying the
additional signal. As a rule of thumb, the stiff pump approximation is valid as long as
the pump power is more than 20 dB larger than the total output power of all amplified
(quantum) signals [Castellanos-Beltran08]. The minimum amount of energy transfer
from the pump field into other modes is set by the amplification of vacuum noise
within the band of amplification. According to Eq. (4.18b) the integrated photon flux
at the output of the paramp is equal to

Pout
γ=0
= ~ωpκ

∫
d∆〈a†out,∆aout,∆〉 = ~ωpκ

∫
d∆(G∆ − 1), (4.21)

when only vacuum fluctuations are incident at the sample. As an example, the realistic
parameter configuration {ω̃0/2π, κ/2π,G0} = {7 GHz, 100 MHz, 20dB} corresponds
to a power of amplified vacuum noise of about −100 dBm. If we want the pump
power to be 20dB higher than this value, the Kerr nonlinearity |K|/2π needs to be
smaller than ∼ 10 kHz, which is calculated using Eq. (4.8). Consequently, the larger
the amplifier bandwidth, the smaller the nonlinearity has to be.

When using the device as an amplifier, we also have to understand its behavior
in terms of added noise. In the ideal case where the loss rate is zero (γ = 0), the
input-output relation of the parametric amplifier in Eq. (4.18b) has the minimal form of
a scattering mode amplifier [Clerk10]. The amplification process reaches the vacuum
limit as long as the input modes are cooled into the vacuum. In practice, however,
the device may have finite loss γ which increases the effectively added noise by a
factor of (κ + γ)/κ. This is due to the additional amplified noise, which originates
from the modes bin,∆ and contributes to the output field aout,∆ (compare Eq. (4.18b)).
Another potential source of noise is related to the stability of the resonance frequency
of the parametric amplifier. Magnetic flux noise in the SQUID loop may lead to a
fluctuating resonance frequency and thus a fluctuating effective gain. In order to avoid
such effects, one has to sufficiently reduce the coupling of the SQUID loop to the
external flux.
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4 Parametric amplification and vacuum noise squeezing

4.3 Effective system parameters from distributed circuit
model

In the previous section we have analyzed the model of a nonlinear resonator with
resonance frequency ω̃0, Kerr nonlinearity K and decay rate κ. Here, we explicitly
derive this effective Hamiltonian from the full circuit model of a λ/4 - transmission
line resonator, which is terminated by a SQUID loop at the short-circuited end and
coupled capacitively to a transmission line, see Figure 4.1(a). These calculations not
only allow us to determine ω̃0,K, κ from the distributed circuit parameters but give
also insight into potential limitations of our effective model.

4.3.1 Resonator mode structure in the linear regime

In order to find the normal mode structure of our system we first neglect its capacitive
coupling to the transmission line as indicated in Figure 4.5. Decay effects due the
environment will be discussed separately in Section 4.3.4. The total Lagrangian
of the system has – in addition to the transmission line part (compare Eq. (2.8))
– a term which describes the SQUID at position x = d, see Figure 4.5(a)-(c) and
Ref. [Wallquist06].

L =

∫ d

0
dx

{ c
2

(∂tΦ(x))2 −
1
2l

(∂xΦ(x))2
}

+EJ cos
(
Φ(d)
ϕ0

)
(4.22)

Since we work in a limit where the Josephson energy is much larger than the charg-
ing energy we can neglect the capacitive contribution. The SQUID is furthermore
described as a single junction with tunable effective Josephson energy EJ .

We first investigate the linear regime of the system, in which the cosine potential of
the SQUID can be approximated as a quadratic potential.

EJ cos
(
Φ(d)
ϕ0

)
≈ const −

1
2

(
Φ(d)
ϕ0

)2

(4.23)

Due to the spatial derivative appearing in the Lagrangian in Eq. (4.22) all local fields
in the chain are coupled to their next neighbors and we have to find the normal mode
structure by solving the Euler-Lagrange equation ∂t(δL/δΦ̇) − δL/δΦ = 0 of the
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Figure 4.5: (a) Distribution of the magnetic flux field Φ(x) along the λ/4-resonator for the
fundamental resonator mode j = 0, without (red) and with (blue) a Jospehson junction. The
additional Josephson inductance changes the boundary condition such that neither the current
nor the voltage is zero at position x = d. The resulting increase in the effective wavelength
π/(2k0) is indicated by the dashed blue line. (b) Transmission line resonator of length d with a
Josephson junction at the grounded end. (c) Lumped element representation with indicated
discretized magnetic flux field Φ j as used in Eq. (4.22). (d) Resonance frequencies of the first
three modes as a function of Josephson energy. The solid line results from the exact numerical
solution of Eq. (4.28) while the dashed line shows the linearized solution in Eq. (4.30). The
bare resonance frequency is chosen to be 7 GHz and the impedance of the transmission line
resonator 50 Ω.

transmission line resonator. This results in the wave equation4

v2∂2
xΦ(x) − ∂2

t Φ(x) = 0, (4.24)

with the phase velocity v = 1/
√

cl, of which the general solution can be written as a
sum of normal modes

Φ(x) =

∞∑
j=0

φ j cos(k jx). (4.25)

Up to here the solution is equivalent to the one for the open λ/2 transmission line
resonator presented in Section 2.2.2. The difference between the two cases is due
to their respective boundary conditions, which determine the valid wavevectors k j.
The open end at x = 0 requires that the current ∂xΦ(x)/l vanishes, which is implicitly
satisfied by choosing the cosine ansatz in Eq. (4.25). On the shorted end the boundary

4Note that for functional derivatives the identity δ
δΦ

∫
dx(∂xΦ(x))2 = 2∂2

xΦ(x) holds.
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condition is modified by the presence of the Josephson junction. In order to determine
this boundary condition, we have to evaluate the Euler-Lagrange equation at position
x = d. For this purpose it is convenient to write the Lagrangian in a discretized form,
see Figure 4.5(c) and compare Ref. [Wallquist06]:

L = lim
n→∞

n∑
j=1

∆x
{ c
2

(∂tΦ j)2 −
1
l

(Φ j − Φ j−1)2

∆x2

}
−

1
2

EJ

(
Φn

ϕ0

)2

(4.26)

where Φn = Φ(x = d) and ∆x = d/n. Evaluating ∂t(∂L/∂Φ̇n) − ∂L/∂Φn = 0 leads to
the equation

1
l
∂xΦ(d) + EJ

Φ(d)
ϕ2

0

= 0. (4.27)

Substituting the normal ansatz Eq. (4.25) into this equation and comparing the resulting
coefficients in front of the independent variables φ j, results in the transcendental
equation

k jd tan(k jd) = ld
EJ

ϕ2
0

≡
ld
LJ
. (4.28)

Here, we have defined the Josephson inductance LJ = ϕ2
0/EJ. The infinite set of

solutions k j of this equation determines the normal modes structure of the system in
the linear regime. In the limit where the SQUID inductance LJ vanishes, Eq. (4.28) is
solved by the poles of tan(k jd), and we recover the normal modes of the λ/4 resonator

k(0)
j d =

π

2
(1 + 2 j) with j ∈ {0, 1, 2, 3, ...}. (4.29)

As a first order correction to this result in the limit of LJ/ld � 1, we expand Eq. (4.28)
to first order in (k(0)

j − k j)d and find k jLJ/ld = (k(0) − k j) or equivalently

k j ≈
k(0)

j

1 + LJ/ld
. (4.30)

For the fundamental mode with j = 0 this linearized approximation is typically
accurate even for inductance ratios up to LJ/ld ≈ 0.5, whereas for the higher harmonic
modes the linearized equation breaks down for much smaller values of LJ/ld. A
comparison between the exact solution based on Eq. (4.28) and the approximate
solution in Eq. (4.30) is shown in Figure 4.5(d) for the first three resonant modes.
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When higher harmonics are expected to be relevant one should solve Eq. (4.28)
numerically in order to determine the exact wave numbers k j.

4.3.2 Kerr nonlinear terms and effective Hamiltonian

Using the normal mode decomposition in Eq. (4.25) we can reexpress the Lagrangian
in Eq. (4.22) as a sum of oscillators which are only coupled via the boundary condition
imposed by the SQUID. For our purposes the phase drop across the junction is typically
small, Φn/ϕ0 � 1 (i.e. the current flowing through the Josephson junction is small
compared to its critical current). We can therefore expand the SQUID cosine potential
and take into account only the first non-quadratic correction

EJ cos
(
Φn

ϕ0

)2

= const −
1
2

EJ

(
Φn

ϕ0

)2

+
1
24

EJ

(
Φn

ϕ0

)4

+ ... . (4.31)

Below we discuss under which circumstances such an approximation may break down.
Substituting the normal mode decomposition Eq. (4.25) into the Taylor expansion of
the Lagrangian results in

L =
1
2

∞∑
i=1

{
φ̇iCiφ̇i − φiL−1

i φi
}
+

∞∑
j,i,k,l=1

Ni jklφiφ jφkφl (4.32)

with the effective capacitances and inductances [Wallquist06]

Ci = c
∫ d

0
dx cos2(kix) =

cd
2

(
1 +

sin(2kid)
2kid

)
,

L−1
i = L−1

J cos2(kid) +
k2

i

l

∫ d

0
dx sin2(kix)

4.28
=

(kid)2

2ld

(
1 +

sin(2kid)
2kid

)
(4.33)

and the nonlinearity coefficients

Ni jkl =
1

24
EJϕ

−4
0

∏
m∈{i, j,k,l}

cos(kmd) . (4.34)

As expected the linear part of the Lagrangian is diagonal in the normal mode basis.
It describes a set of uncoupled LC oscillators for which the effective resonance
frequencies coincide with the product of phase velocity and wave vector ω j = k jv =

1/
√

L jC j.
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In the limit of vanishing Josephson inductance the effective capacitance is constant
for all harmonic modes (compare pg. 275 of Ref. [Pozar93])

C j
LJ=0
=

cd
2

=
π

4Z0ωTL
, (4.35)

while the effective inductance reduces to

L j
LJ=0
=

8ld
π2(1 + 2 j)2 =

4Z0

πωTL(1 + 2 j)2 . (4.36)

Here, Z0 is the impedance of the transmission line, which is typically 50Ω, and
ωTL = vk(0)

0 is the bare resonance frequency of the λ/4 transmission line resonator.
The effective impedance of mode j is given by

√
L j/C j = 2Z0/π(1 + 2 j).

Based on the Lagrange function in Eq. (4.32) we derive the Hamiltonian by intro-
ducing the conjugate charge variables qi = δL/δφ̇i = Ciφ̇i. Performing a Legendre
transformation and taking only self-interactions and two-mode interactions into ac-
count, results in the Hamiltonian

H =
1
2

∞∑
i=1

{
qiC−1

i qi + φiL−1
i φi

}
− 3

∞∑
j,i

Nii j jφ
2
i φ

2
j −

∞∑
i

Niiiiφ
4
i . (4.37)

In a quantum regime qi and φi are operators which satisfy the commutation relation
[φ j, qi] = δi j~/i and it is convenient to write the Hamiltonian in terms of normal mode
annihilation and creation operators

φ j = iφzpf, j(a
†

j − a j) , q j = qzpf, j(a j + a†j) (4.38)

with

qzpf,i =

√
~ωiCi

2
, φzpf,i =

√
~

2ωiCi
. (4.39)

The abbreviation zpf stands for zero point fluctuations. With the above definitions,
the mode operators ai obey bosonic commutation relations [ai, a

†

j] = δi, j . Performing
a rotating wave approximation (i.e. removing all terms with an unequal number
of creation and annihilation operators), and neglecting the small photon number
independent frequency shifts due to the nonlinear terms (i.e. Lamb shifts) we arrive at

H =
1
2

∞∑
i=1

~ωi + ~
Ki

2
a†i a†i aiai +

∞∑
j,i

~Ki ja
†

i aia
†

ja j. (4.40)
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with

Ki = Kii = −
EJ

2~

(
φzpf

ϕ0

)4

cos4(kid)
4.30
≈ −

EJ

2~

(
φzpf

ϕ0

)4 (LJ

ld

)4
∝ E−3

J

Ki j = −
EJ

2~

(
φzpf

ϕ0

)4

cos2(kid) cos2(k jd) (4.41)

The quantity K = K0 is the Kerr nonlinearity of the fundamental mode, which is
used for the parametric amplification process. The terms proportional to Ki j with
unequal i , j are cross Kerr interaction terms which couple different modes to each
other. Such an interaction can for example be used for counting the number of photons
in one mode by probing another one with a coherent field [Imoto85, Sanders89,
Santamore04, Buks06, Helmer09, Johnson10, Suchoi10], similarly to a dispersive
qubit measurement. Note that the values resulting from Eq. (4.41) have to be divided
by the square of the number of SQUIDs, if an array is used instead of a single SQUID,
as discussed in the following section.

4.3.3 Josephson junction arrays

For deriving the Hamiltonian in Eq. (4.40) we have expanded the SQUID cosine
potential to quartic order in the dimensionless flux variable Φn/ϕ0 where Φn ≡ Φ(x =

d). To guarantee that this approximation holds when we operate the device in the
parametric amplification regime, we have to guarantee that Φn/ϕ0 is small even close
to the bifurcation point. Equivalently, we can ask, whether the current flowing through
the SQUID loop at corresponding drive powers is small compared to the critical
current.

To characterize the validity of the low order expansion of the cosine potential
we define the critical coherent field inside the resonator αcrit as the one for which
Φn

!
= ϕ0. According to Eq. (4.38) and Eq. (4.25) a coherent field α in mode j leads

to an maximal amplitude of Φn = φzpf, j
√

2α cos(k jd) across the junction, based on
which we define the critical amplitude as

αcrit, j =
ϕ0

φzpf, j

1
√

2 cos(k jd)
=

ϕ0

φzpf, j

ld
√

2LJk jd sin(k jd)
. (4.42)

The low order expansion of the SQUID cosine potential is only valid if the field inside
the resonator α is always much smaller than this critical amplitude α � αcrit.

In Section 4.2.1 about the parametric amplifier response we have found that the
photon number in a resonator mode at the bifurcation point is Nbf = (κ+γ)/

√
3K. The

ratio between Nbf and the critical photon number Ncrit, j ≡ |αcrit, j|
2, which we would
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Figure 4.6: (a) The phase drop across a single SQUID junction is proportional to the node
flux Φn (indicated by the circle) at the end of the transmission line. (b) If we replace the
single junction by an serial array of M junctions with M times larger Josephson energy, the
phase drop across each junction is by a factor of M smaller while the total effective Josephson
inductance stays the same.

like to keep small, is given by

Nbf

Ncrit, j
=
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The second line holds in the limit of small ratios LJ � ld. As we have pointed
out earlier, the dynamic range of the parametric amplifier increases when the Kerr
nonlinearity becomes smaller. Unfortunately this requires a large Josephson energy
(i.e. small Josephson inductance) which increases the ratio Nbf/Ncrit. Furthermore,
Nbf/Ncrit increases linearly with κ, which makes it challenging to build a parametric
amplifier with large bandwidth and high dynamic range at the same time using just a
single SQUID.

However, by replacing the single SQUID with a serial array of M SQUIDs of
M-times larger Josephson energy per SQUID (Figure 4.6), we can keep Nbf/Ncrit
constant while decreasing the nonlinearity and thus increasing the dynamic range
of the amplifier. For simplicity we assume that all SQUIDs in the array have the
same effective Josephson energy MEJ . Since the spatial extent of the junction is still
small compared to typical resonance wavelengths, we can treat the array as a lumped
element. Let us investigate how the different terms in the Lagrangian scale with M.

Assuming that the phase drop from the flux node at the end of the transmission line
resonator to the ground is homogeneously distributed over the array, we have the same
phase drop Φn/M across each SQUID, see Figure 4.6. As a result the quadratic term
in the Lagrangian scales as

EJ

2
Φ2

n
1→M
−→

M∑
i=1

MEJ

2

(
Φn

M

)2

=
EJ

2
Φ2

n (4.44)
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and thus remains constant. This agrees with our expectation, since the total linear
Josephson inductance has not been changed. However, the quartic term scales like

EJ

24
Φ4

n
1→M
−→

M∑
i=1

MEJ

24

(
Φn

M

)4

=
1

M2

EJ

24
Φ4

n, (4.45)

which leads to a quadratic decrease in the effective Kerr nonlinearity and thus a
quadratic increase in Nbf ∝ M2. Furthermore, the critical photon number scales also
as Ncrit, j ∝ M2 since the critical current of each junction is larger by a factor of M.
In other words, the ratio Nbf/Ncrit only depends on the total Josephson inductance
whereas the bifurcation power increases quadratically in M. For parametric amplifier
purposes we can thus conclude that it is advantageous to use an array of SQUIDs
instead of a single SQUID.

In practice, the Josephson energies in the array are not all equal due to inhomoge-
neous coupling to the external magnetic flux. A quantitative analysis of the influence
of such variations of Josephson energies on the parametric amplifier characteristics
could be an interesting task for future studies. This would help to quantify limitations
in the accessible tuning range of the parametric amplifier and a realistic understanding
of the breakdown of the expansion of the cosine potential. For such an approach the
methods used in Ref. [Ferguson12] could turn out to be useful.

4.3.4 Decay rate and resonance frequency correction for low Q
resonators

Since the parametric amplifier bandwidth is proportional to the decay rate κ, typical
devices are designed to have a low external quality factor, which is achieved by increas-
ing the coupling capacitance Cκ between transmission line and resonator (Figure 4.1).
As calculated in Section 2.2.3 the coupling of an oscillator to the environment shifts
its resonance frequency ω j → ω̃ j [Göppl08], which can be significant if the coupling
rate is large. When designing parametric amplifier devices, it is therefore necessary
to take these shifts into account. Based on the effective inductance and capacitances
calculated in Eq. (4.34) and the formulas in Section 2.2.3 we find the approximate
expressions

ω̃2
j ≈

ω2
j

1 + Cκ/C j
=

1
(C j + Cκ)L j

and κ j ≈
ω̃2

jC
2
κR

Cκ + C j
(4.46)

for resonance frequency and decay rate of the j’th mode of the parametric amplifier
device. The external quality factor is given by Q j ≡ ω̃ j/κ j.

In summary, we have explicitly calculated the Kerr nonlinearity K, the resonance
frequency ω̃0 and the decay rate κ for the specific circuit topology of a Josephson
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4 Parametric amplification and vacuum noise squeezing

parametric amplifier. We have established a model for the parametric amplifier
properties in dependence on designable circuit parameters such as Josephson energy,
transmission line length and coupling capacitance. Based on these consideration we
have designed, fabricated and and characterized devices, as discussed in the following
section.

4.4 Experimental characterization of parametric
amplifiers

4.4.1 Tunability and (non-)linear response

We characterize the Josephson parametric amplifier by first measuring the reflection
coefficient Γ in the low power regime for varying magnetic flux bias. To this aim we
employ the setup in Figure 4.7, which allows for measuring both the absolute value as
well as the phase of the reflection coefficient Γ. We thus achieve the performance of
a network analyzer using signal generators, FPGA electronics and a Labview based
measurement software.

When probing the device spectroscopically, the frequency of a probe field is swept
within the range of interest, while keeping the local oscillator frequency at a fixed
detuning from the probe field. The down-converted signal contains information about
magnitude and phase of the signal reflected from the device. Since the phase of our
microwave generators changes in a random fashion every time when the frequency
is changed, we have to perform individual reference measurements to determine the
relative phase between the local oscillator and the probe field. This is done by splitting
both microwave fields into two parts. One part goes directly into the detection chain
while the other part is transmitted to the device, from which it is reflected before
entering the second channel of the detection chain (Figure 4.7). In both channels we
sample the complex amplitudes S 1 = X1 + iP1 and S 2 = X2 + iP2 as introduced earlier.

Up to small amplitude variations due to frequency dependent attenuations in cables
and components, the magnitude of the reference amplitude |S 1| is almost constant over
frequency. Since the phase of the probe signal is the same in both channels we can thus
cancel it out by multiplying S 1 with the complex conjugate of S 2 before averaging.
The remaining part is then proportional to the desired reflection coefficient. The
product of S 1 and S ∗2 has an additional phase factor, which originates from the relative
propagation delay τ = τ2−τ1 in the two paths. In our setups this delay time is typically
around ∼ 20 ns, which corresponds to a 2π winding of the phase after a frequency
change of 50 MHz. Since the dispersion relation of electromagnetic radiation in semi-
rigid cables is linear, we can easily account for this phase by multiplying the measured
〈S 1S ∗2〉 with eiωτ. The correct relative delay is either found by visual inspection and
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Figure 4.7: (a) Schematic of the measurement setup used for measuring the complex reflection
coefficient Γ using microwave signal generators and FPGA electronics. (b) Real part of the
measured reflection coefficient Γ for a parametric amplifier device with an array of three
SQUIDs.

manual adjustment τ or by an algorithm, which minimizes the variance of the final
phase values vs. frequency with respect to τ. Alternatively, we can tune the paramp
resonance out of the relevant frequency range and measure a reference trace by which
we divide all the other measurement data. This method achieves a cancelation of the
phase factor eiωτ and furthermore leads to a normalization of the data.

The result of such a measurement is shown in Figure 4.7(b) for a parametric ampli-
fier device with an array of three SQUIDs. As expected, the resonance frequencies
at which we see a strong change in the reflected signal, change with magnetic flux.
Due to the inhomogeneous coupling of the SQUID loops to the external magnetic flux,
each SQUID has its own periodicity. As a result, the individual periodicities interfere
with each other and lead to the specific dependence of the resonance frequency on the
applied magnetic field. In order to minimize the inhomogeneity in flux coupling we re-
moved the ground plane in a region close to the resonator in our latest sample designs,
see Figure 4.1(c). The cutout in the ground plane also reduces the overall coupling to
the external magnetic field due to reduced flux focusing, which is desirable for the
parametric amplifier devices, since the SQUID loops are typically much larger than
for the small loops used in transmon qubits. A more detailed study of different ground
plane geometries could help in further reducing the inhomogeneous flux coupling.

We further analyze the data shown in Figure 4.7(b) by fitting the real and imaginary
part of the result to Eq. (4.9) for each B-field value. One example of such a fit is
shown in Figure 4.8(a) together with the corresponding data set, from which we extract
the resonance frequency ω̃0 = 6.267 GHz, the internal Qint = ω̃0/γ ≈ 2500 and the
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Figure 4.8: (a) Measured real (blue dots) and imaginary (red diamonds) parts of the reflection
coefficient Γ in the linear regime for the flux bias φext = 0.23 and fit to theory (lines). (b,c)
Extracted resonance frequencies vs. applied magnetic flux for a device with an array of three
SQUIDs (b) and for a device with a single SQUID (c). The lines are fits to the theory from
which we extract the effective Josephson energy of the SQUID (the SQUID array). Optical
micrographs of the SQUIDs of both samples are shown in the bottom part of the figure.

external Qext = ω̃0/γ ≈ 430 quality factors at this particular frequency. Performing
such a fit for all magnetic flux bias values φext, we extract the resonance frequency as
a function of φext, see Figure 4.8(b)-(c).

We fit this set of data to the model in Eq. (4.28) to determine the maximal effective
Josephson energy EJ,max of the SQUID (or the SQUID array). The transmission line
inductance L, which is determined by the length and effective dielectric constant of
the transmission line is kept fixed during this fit. For the particular device with an
array of three SQUIDs we obtain EJ,max/h ≈ 1.3 THz. This measured value has to be
compared to one third of 5 THz, which was the value for EJ per SQUID we aimed for
during the design and fabrication process. Using Eq. (4.41) we can also calculate the
nonlinearity K/ω̃0 ≈ −1.1 × 10−6 from the extracted effective Josphson energy and
the number of SQUIDs in the array. For comparison, we also show the measured flux
dependence of the resonance frequency for a single SQUID device in Figure 4.8(c)).
As expected, the resonance frequency periodically depends on the applied magnetic
flux. The effective maximal Josephson energy for this device was extracted to be
4.9 THz.

Once we have characterized the device in the linear regime we tune the resonator
to approximately

√
3κ/2 above the frequency at which we would like to achieve

parametric amplification and probe the nonlinear reflection coefficient. In Figure 4.9(a)
we show the measurement results and the fits to Eq. (4.9) for different measurement
powers. For powers close to the critical point the effective resonance frequency is
shifted to lower frequencies. Furthermore, the gradient of the phase of the reflected
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Figure 4.9: (a) Measurement of the reflection coefficient Γ in the nonlinear regime. Data
points (black) and fit (solid lines) for real and imaginary part. (b) Real part of the measured
reflection coefficient in a 2D color plot for all measured power values. The dashed lines
indicate the traces shown in (a).

signal increases with frequency when approaching the critical point. As explained
earlier, the device response is very sensitive to small external perturbations at this
point, which can be used for their amplification. In Figure 4.9(b) we show the 2D
density plot of the real part of Γ for all measured powers. The white dashed lines
indicate the three cuts through this set of data which are shown in (a). The determined
critical power is approximately Pcrit ≈ −105 dBm, which is in reasonable agreement
with the expected value Pcrit = ~ωp(κ + γ)3/

√
27κ|K| = −107 dBm, if we take into

account the finite accuracy with which we have determined both the cable attenuation
between sample and pump source as well as the Kerr nonlinearity K.

Using the sequence of measurements described in this section, we determine all
relevant device parameters. The results are in very good agreement with the model
presented in the previous sections even close to the bifurcation point where we expect
parametric amplification to occur.

4.4.2 Gain measurements

When using the resonator as a parametric amplifier we apply a coherent pump tone,
such that the device response becomes highly nonlinear. The frequency and power
range in which we expect this to happen is specified by the measurements shown in
Figure 4.9. In addition to the pump tone we apply a second coherent field acting as a
test signal, which is slightly detuned from the pump and has a much smaller power –
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typically 60 dB less than the pump. We detect the output of the parametric amplifier
device for this combination of input fields and analyze its relevant frequency compo-
nents individually, see Figure 4.10(a). From Eq. (4.18b) we expect the small signal
power to be amplified by the factor G∆ = |gS ,∆|

2 and an additional tone with opposite
detuning from the pump to be generated. This tone is called idler or intermodulation
tone. We schematically visualize the described effects in Figure 4.10(b), by comparing
the coherent parts of the power spectral densities at the input and at the output of the
device. The energy required for the amplification of the signal and the creation of
the idler tone is provided by the pump. The relative change in the pump amplitude
is, however, negligible in the limit where the amplified signal power is much smaller
than the pump power.

To extract the gain G∆ from the change of the amplitude at the signal frequency
we isolate this amplitude from the pump and idler tones. One possibility to do so is
to record power spectral densities and to compare the coherent power at the signal
frequency for the pump turned on and off. However, when measuring the gain as a
function of various parameters (e.g. pump frequency, pump power, signal frequency,
signal power, external magnetic flux) we aim for a technique which allows for a fast
determination of the amplitude at exactly the signal frequency without evaluating and
storing the whole power spectral density.

We achieve this in our experiments by using a specific filtering method, which
ensures that both the pump and the idler frequency components drop out in the
averaged down-converted signal. For the data acquisition we chose the local oscillator
frequency such that the signal tone appears at DC after the down-conversion. We
sample the down-converted and digitally filtered signal over 20.48 µs and take the
time-average over all 2048 sample points. We repeat this measurement sequence
every 25 µs (trigger time) and average all individual values to get the final complex
amplitude, which corresponds to the mean coherent amplitude at the signal frequency.
The pump detuning from the signal is chosen 10 kHz above or below a multiple of the
inverse trigger time 1/25 µs = 40 kHz. Consequently, the pump tone changes its phase
in every measurement trace by π/2 compared to the trace before. When averaging
over many of these traces the pump tone thus cancels out. For the specific signal-pump
detuning the idler frequency after down-conversion is 20 kHz detuned from a multiple
of the trigger frequency 40 kHz and cancels out as well.

In a first experimental run we measure the maximum gain G0 as a function of pump
power and pump frequency by keeping the signal frequency at a fixed detuning of
10 kHz from the pump frequency. Since for all measured pump configurations this
detuning is much smaller than the bandwidth of the parametric amplifier 10 kHz �
κ/
√

G0, it is valid to interpret this gain as the maximal one, for which the signal-
pump detuning is essentially zero. The results of this measurement are shown in
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Figure 4.10: (a) Simplified schematic of the experimental setup, which is used for probing
the gain properties of the parametric amplifier device. In addition to the pump tone we apply
a weak signal field to the device. (b) Schematic of the expected power spectral densities at
the input and output of the parametric amplifier shown without the noise contributions. (c)
Measurement of the gain G0 of the amplifier as a function of pump power and pump frequency
for a fixed signal detuning of 10 kHz. The dashed white lines indicate the selected traces,
which are shown in (d) together with individual fits to the theory. The data shown is measured
on the sample with the array of three SQUIDs, see Figure 4.8.

Figure 4.10(c) where the four dashed white lines indicate the individual measurement
traces shown in Figure 4.10(d). In agreement with the theoretical expectation we find
a small region in parameter space for which amplification with high gain is possible.
With increasing pump power the effective resonance frequency of the device shifts
to lower frequencies and so does the optimal pump frequency. The fact that the
gain can take values below 0 dB is explained by the finite internal losses of about
γ/(κ + γ) ≈ 20% for this particular sample.

In most realistic experiments, the signals which are to be amplified are not
monochromatic but have a finite bandwidth. It is thus of central importance how
the gain depends on the detuning of the signal from the pump. We measure this
property by fixing the pump tone at a specific frequency and power, while changing
the frequency of the weak signal field. Also in these experiments the detuning between
signal and pump is set 10 kHz away from a multiple of the trigger frequency 40 kHz.
In Figure 4.11(a) we show measurements of the gain as a function of the signal fre-
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quency for three different pump powers. For each power value we have adjusted the
pump frequency to achieve maximal gain. Consequently, the maximum of the gain
curve, which is reached at minimal detuning from the pump, shifts to lower values
with increasing pump power. We find the gain bandwidth product

√
G0B equal to the

individually measured linewidth of the device, independent of the specific point of
operation.

We have also measured the idler (i.e. intermodulation) gain |gI,∆|
2 of the device

by matching the local oscillator frequency to the frequency at which we expect the
idler tone to appear. The resulting gain, which is evaluated as the ratio between the
output power at the idler frequency and the power of the input signal is shown in
Figure 4.11(b). In the limit of high gain, the relative difference between signal and
idler gain vanishes and the measured curves appear almost identical. The measurement
results are in good agreement with the theoretical prediction, which we have plotted
using the same parameters as in (a).

The measurement of the idler gain indicates that signal and idler are strongly
correlated. We further investigate these correlations by measuring the sum of signal
and idler fields as a function of the phase of the pump tone φ. For this experiment
we set the analog local oscillator frequency equal to the pump frequency and fix the
detuning between signal and pump to 500 kHz. As a result, one of the output ports
of the IQ mixer returns the sum of signal and idler fields at the carrier frequency at
500 kHz. The power at this frequency is therefore expected to be proportional to
the correlated gain |gS ,∆eiφ + g∗I,−∆

e−iφ|2. In the limit of large gain this expression is
approximately proportional to a cosine function and becomes smaller than one for
specific values of the pump phase. The signal is deamplified in this case, which we
observe experimentally as shown in Figure 4.11(c). The presence of correlations
between signal and idler frequency components can be used for using the device in a
phase-sensitive mode where it amplifies one quadrature noiselessly while deamplifying
the conjugate quadrature [Caves82]. Furthermore, it implies the possibility to squeeze
noise below the vacuum limit [Castellanos-Beltran08, Eichler11a, Flurin12] as long
as the input modes incident to the parametric amplifier device are cooled close to the
vacuum noise level.

In summary, we have demonstrated a detailed spectroscopic characterization of
parametric amplifier devices. Their properties are well-explained by the theory pre-
sented in Section 4.2. In the following section we explain how to operate the device
either as a phase-sensitive or a phase-insensitive amplifier for (quantum) signals with
a finite bandwidth.
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Figure 4.11: (a) Measurement of the signal gain as a function of signal frequency for three
different pump configurations P/Pcrit = {0.65, 0.82, 0.88} and fit to theory (solid lines). (b)
Measured and theoretically expected idler (intermodulation) gain for the same three pump
configurations. (c) Correlated gain as a function of pump phase and fit to a cosine function.

4.4.3 Phase-sensitive and phase-insensitive mode of operation

The parametric amplification process mixes frequency components which have oppo-
site detuning from the pump frequency. Due to this intermodulating property of the
amplification process, we can operate the device in two qualitatively different regimes.
The difference between the two is determined by the relative detuning between the
pump frequency and the detected frequency window. If the detected frequencies are
centered around the pump frequency the amplification is phase-sensitive (i.e. one
quadrature of the field is amplified while the other one is deamplified). If we detect
only frequency components which have either positive or negative detunings from the
pump the amplification is phase-insensitive (i.e. phase-preserving). Both cases are
schematically depicted in Figure 4.12.

We assume that the radiation, which is to be amplified, is described by the modes
aout(t). The index "out" indicates that it originates from the output of a source, e.g.
a single-sided resonator. Since this radiation typically has a finite bandwidth, the
sampled output is convolved with a filter function f (t) of appropriate bandwidth and
shape to obtain a single pair of quadratures, as discussed in Section 3.2.2. Expressed
in frequency domain, this quadrature pair is the result of a measurement performed on
the sum of an effective noise mode and the following mode of interest

a =

∫ ∞

−∞

d∆ f∆aout,∆. (4.47)

Here, aout,∆ is the Fourier transform of output modes aout(t) as defined in Eq. (4.12)
and f∆ is the filter function in frequency domain, which is normalized such that
[a, a†] = 1. For convenience we specify all frequencies by their detuning ∆ from
the pump frequency. If we consider the case in which the radiation is sent through a
parametric amplifier before it is detected, the observed mode a is modified according
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to the parametric amplifier transformation in Eq. (4.18b) to

a
JPA
→ aamp =

∫ ∞

−∞

d∆ f∆
(
gS ,∆aout,∆ + gI,∆a†out,−∆

)
, (4.48)

For simplicity, we have neglected potential internal losses of the parametric
amplifier here (γ = 0). Although this equation already describes the most general
amplifier response, it is instructive to discuss two special choices of the pump
frequency relative to the detection window f∆. In one case the amplifier acts as a
phase-sensitive amplifier, while in the other case it acts as a phase-insensitive amplifier.

Phase-sensitive mode of operation: If we chose the detected band f∆ such
that it is centered around the pump frequency (compare Figure 4.12(a)) and
furthermore chose the filter coefficients to be real f (t) ∈ R, the identity f∆ = f ∗

−∆

holds and the amplifier output in the detected band writes

aamp =

∫ ∞

−∞

d∆
(

f∆gS ,∆aout,∆ + f ∗
−∆gI,∆a†out,−∆

)
=

∫ ∞

−∞

d∆ f∆gS ,∆aout,∆ +

(∫ ∞

−∞

d f∆g∗I,−∆aout,∆

)†
. (4.49)

If we further assume that the bandwidth of the amplifier is large compared to the
width of the detected band, we can neglect the frequency dependence of the gain and
approximate gS ,∆ ≈ gS ,0 and gI,∆ ≈ gI,0. Eq. (4.55) then simplifies to

aamp ≈ gS ,0

∫ ∞

−∞

d∆ f∆aout,∆ + gI,0

(∫ ∞

−∞

d f∆aout,∆

)†
= gS ,0a + gI,0a† (4.50)

With a proper choice of the pump phase and by dropping a global phase factor this
last equation becomes

aamp ≈
√

G0a +
√

G0 − 1a†, (4.51)

which is identical to the generic single mode squeezing transformation, already in-
troduced in Eq. (3.3). While in this mode of operation one quadrature of the field
X = (a + a†)/2 is amplified

X
JPA
→ Xamp =

( √
G0 +

√
G0 − 1

)
X (4.52)
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Figure 4.12: (a) Phase-sensitive regime, in which the detected frequencies – described by the
filter function f∆ – are symmetrically distributed around the pump frequency. Intermodula-
tion during the parametric amplification process leads to an interference between frequency
components with positive and negative detuning from the pump, which is the origin of the
phase-sensitivity. The gain (black line) is assumed to be almost constant within the band of
detection. (b) In a phase-insensitive mode of operation the detected frequency band (red area)
is detuned from the pump frequency by amount Ω. The field at frequency components with
opposite detuning from the pump (blue area), which carries at least the vacuum noise, is added
to the field a during the parametric amplification.

the orthogonal quadrature P = i(a† − a)/2 is deamplified

P
JPA
→ Pamp =

( √
G0 −

√
G0 − 1

)
P. (4.53)

The commutation relation is preserved under this transformation [Xamp, Pamp] =

[X, P] = i/2. Since no additional mode is introduced, the amplification of the X
quadrature is noiseless. The phase-sensitivity (i.e. quadrature dependence) of the
amplification can be understood as an interference effect. Due to the parametric
intermodulation the positive and the negative frequency components are phase
correlated such that their sum interferes constructively in one quadrature and
destructively in the orthogonal quadrature. Note that by changing the phase of the
pump field we can chose any of the generalized quadratures Xφ ≡ (a†eiφ + ae−iφ)/2
to be amplified. Noiseless, phase-sensitive amplification schemes are particularly
interesting for dispersive qubit readout where the qubit state can be encoded into one
quadrature of a coherent readout field [Blais04] and for photon state tomography
based on optical tomograms [Mallet11].

Phase-insensitive mode of operation: The photon field characterization methods
presented in Chapter 3 were all based on the simultaneous detection of both conjugate
field quadratures, which requires a phase-insensitive amplification chain. Also in many
instances of practical relevance (e.g. basic sample characterization) it is convenient
to operate the parametric amplifier in a regime where it amplifies both quadratures
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4 Parametric amplification and vacuum noise squeezing

equally. Although in this mode of operation a minimal amount of noise is added, the
corresponding measurement still projects onto pure coherent states in the case of
quantum-limited amplification as already discussed in Section 3.4.2. Consequently,
this added noise is not necessarily accompanied by a loss of information. The acquired
information is still complete in a sense that the post measurement state is pure.

In order to use the parametric amplifier as a phase-insensitive amplifier we chose
an operation point at which the pump frequency is far detuned by Ω from the center of
the detection band (Figure 4.12(b)). We consider the case indicated in Figure 4.12(b),
in which only frequency components with positive detuning from the pump contribute
to the detected field. To good approximation we can then write

a ≈
∫ ∞

0
d∆ f∆ aout,∆. (4.54)

and neglect the frequency components with negative detuning from the pump. Within
this approximation the amplified and filtered mode can be expressed as

aamp =

∫ ∞

0
d∆ f∆ gS ,∆ aout,∆ + f∆ gI,∆ a†out,−∆

=

∫ ∞

0
d∆ f∆ gS ,∆ aout,∆ +

∫ 0

−∞

d∆ f−∆ gI,−∆ a†out,∆ (4.55)

Making again the assumption that the gain is almost constant within the relevant band
of detection this further simplifies to

aamp ≈ gS ,Ω

∫ ∞

0
d∆ f∆ aout,∆ + gI,Ω

∫ 0

−∞

d∆ f−∆ a†out,∆

= gS ,Ω a + gI,Ω h†. (4.56)

with the definition h =
∫ 0
−∞

d∆ f ∗
−∆

aout,∆. In the limit of large detuning Ω between pump
and detected frequency window, the overlap integral

∫
d∆ f ∗

−∆
f∆ ≈ 0 vanishes and

consequently a and h are independent modes [a, h†] ≈ 0. If the signal, which we would
like to amplify, lies within the frequency range captured by mode a we can interpret
mode h as an independent noise mode, which adds to the signal at the output of the
amplifier (Figure 4.12(b)). The transformation in the second line of Eq. (4.56) is a two
mode squeezing transformation, which describes a generic phase-insensitive linear
amplification process. The additional noise in mode h† adds to the signal at the output
of the amplifier and introduces at least the vacuum noise such that the simultaneous
amplification of both quadratures of mode a satisfies Heisenberg’s uncertainty relation
and preserves the bosonic commutation relation [aamp, a

†
amp] = [a, a†] = 1.
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4.5 Observation of two-mode squeezing in the microwave frequency domain

In both cases we have for simplicity neglected the frequency dependence of the
gain. If we relax this condition, all the general statements made above are still valid
and the limited parametric amplifier bandwidth can be understood as an additional
bandpass filter effect. If we aim for finding an optimal filter function f∆ for a signal
aout,∆ with known spectral shape we can take into account the frequency dependent
gain, as well as the effective noise added during the following amplification stages, to
maximize the overall detection efficiency.

4.5 Observation of two-mode squeezing in the
microwave frequency domain

The described parametric amplifiers is expected to generate entangled photon pairs of
frequencies ω1/2π and ω2/2π by annihilating two pump photons 2ωp = ω1 +ω2. This
four-wave mixing process even occurs, if only vacuum fluctuations are present at the
input of the parametric amplifier [Castellanos-Beltran08, Mallet11]. The correspond-
ing field modes a1 and a2 emitted from the single broadband resonator mode, which
are separated in frequency space [Yonezawa07, Kamal09], are then described by a
two-mode squeezed state. Alternatively, one can generate two-mode squeezing in two
spatially separated modes as has recently been demonstrated [Flurin12, Menzel12].
The entanglement between created photon pairs is revealed in squeezing correlations
between the two field modes. The measurement of such continuous variable correla-
tions also provides a direct verification of the quantum limited nature of the parametric
amplification process.

Continuous variable entanglement between two modes of a radiation field has
until recently mostly been studied at optical frequencies. In this frequency range
well-established multi-mode state reconstruction techniques based on single photon
counters exist. These have already allowed for a variety of experiments in the con-
text of the EPR paradox [Einstein35, Reid88, Ou92, Babichev04, Vasilyev00] and
for the realization of continuous variable quantum computation, cryptography and
teleportation experiments [Braunstein05, Furusawa98, Grosshans03].

Here, we apply the state reconstruction methods discussed in Section 3.3 to measure
the covariance matrix of a two-mode squeezed state generated in a Josephson para-
metric amplifier. State tomography for more than a single mode of a radiation field
allows to characterize photon sources that display entanglement between propagating
photons, see Section 3.6. We first describe the measurement setup, discuss the device
parameters, and characterize the system as a phase-insensitive amplifier. We then
measure the covariance matrix and reconstruct the Gaussian Wigner function of the
four quadrature components [Braunstein05].

109



4 Parametric amplification and vacuum noise squeezing

4.5.1 Experimental Setup and system noise calibration

For the squeezing experiment we use a parametric amplifier with an array of three
SQUIDs, for which we have already presented most of the characterization measure-
ments in the previous sections (Figure 4.13(a)). The SQUID array has an effective
Josephson energy of EJ,max/h ≈ 1.3 THz, which results in a maximal resonator fre-
quency of ω̃0,max/2π ≈ 6.4 GHz. At the chosen flux bias we extract a resonance
frequency of ω̃0,max/2π ≈ 5.893 GHz and an external coupling rate of κ/2π ≈ 15 MHz
which dominates over the internal loss γ/2π ≈ 2.5 MHz. We identify the criti-
cal point where G0 takes its largest value [Vijay09] at ωp,crit/2π ≈ 5.877 GHz and
Pp,crit ≈ −114 dBm. For pump powers below Pp,crit we are in the stable amplifier
regime. A decrease in pump power leads to smaller gain but to larger amplifier
bandwidth B. The gain-bandwidth product remains constant according to the rela-
tion

√
G0B ∝ κ [Yurke06], which we have verified experimentally. For the follow-

ing measurements we have fixed the coherent pump at ωp/2π = 5.88275 GHz and
Pp ≈ −116.9 dBm.

The signal frequency dependence of the gain G∆ for this pump tone is shown in
Figure 4.13(b), which is well fitted by the theoretical expectation (black line). To
determine the effective system noise relative to the output of the parametric amplifier,
we have also measured the noise power spectral density S ∆ [Lang11] and compare
it with the gain curve G∆. The power spectral density can be decomposed into two
contributions

S ∆δ(∆ − ∆′) = 〈h†(∆′)h(∆)〉 + 〈aout(∆′)a
†
out(∆)〉. (4.57)

The first term on the right hand side describes the system noise part which is dominated
by the HEMT amplifier noise. In the relevant frequency range it is almost frequency
independent and leads to a constant contribution of Nnoise noise photons per Hz per
second to S ∆ (Figure 4.13(b)). The second term in Eq. (4.57) stands for the noise at
the output of the parametric amplifier. Since in the ideal case it can be interpreted as
the amplified vacuum noise, the curves for G∆ and (S ∆ − Nnoise) are expected to be
close to identical. We can thus extract Nnoise by scaling the measured power spectral
density such that the measured gain curve G∆ and the measured power spectral density
are equal to each other up to the system noise offset Nnoise. For our measurements,
both data sets are well described by the same theoretical curve [Yurke06], see black
lines in Figure 4.13(b) from which we determine the system noise number Nnoise ≈ 48.
Note that our comparison between gain and power spectral density results in a lower
bound for the system noise Nnoise, because it is based on the assumption that only
the minimal amount of noise (vacuum noise) is amplified. Both, finite internal losses
and residual thermal noise at the input of the parametric amplifier cause an increase
in the spectral power compared to the gain. Taking such imperfections into account
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Figure 4.13: (a) Schematic of the experimental setup. The input and output modes of the
parametric amplifier are separated using a circulator. Input modes ain are in the vacuum state
due to cold attenuators. The output signal is amplified by a cold HEMT amplifier at 4K,
introducing the dominant part of additional system noise h. Mixing with two individual local
oscillators at room temperature allows for a simultaneous detection of two distinct modes in
frequency space. (b) Measured gain G∆ (red dots) and power spectral density S ∆ (blue dots)
for a fixed pump tone as a function of detuning ∆. The 3 dB bandwidth of the gain curve with
a maximum gain of 10 dB is B/2π ≈ 3.6 MHz. The Sinc Chebyshev filter functions f1(∆) and
f2(∆), defining modes a1 and a2, are shown on a logarithmic scale (arb. units) as the lines
enclosing the shaded areas.

would consequently lead to a larger system noise number. Evaluating the following
squeezing measurements on the strict lower bound for the system noise Nnoise ≈ 48
therefore guarantees, that the extracted amount of squeezing provides a minimal value.

4.5.2 Measuring correlations between signal and idler noise

Up to now we have characterized our device as a phase-insensitive amplifier. If the
input of the parametric amplifier is in the vacuum, the output is amplified vacuum
noise. However, due to the parametric nature of this amplification process, where
signal and idler photons are always generated in pairs, we expect the signal and idler
frequency noise to be strongly correlated. More specifically, the signal and idler output
modes should approximately be described by a two-mode squeezed vacuum state. We
verify this experimentally by pumping the resonator with the same coherent pump
tone as before and recording the quadrature amplitudes in both modes individually.

The resonator output is amplified with the same HEMT amplifier as used for the
gain measurements and split into two channels. To separate signal and idler frequency
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4 Parametric amplification and vacuum noise squeezing

components from each other (Figure 4.13) we effectively down-convert the microwaves
in both channels by mixing them with local oscillator tones at frequencies ωLO1/2π
and ωLO2/2π set 6.25 MHz above and below the pump frequency, respectively. The
voltages are digitized every 10 ns with an analog to digital converter. Using a field
programmable gate array the data is digitally filtered with a Sinc Chebyshev filter
function f (∆) as shown in Figure 4.13(b). As a result the two detection channels
linearly detect photons with frequencies in the windows f1(∆) = f (∆− 2π× 6.25MHz)
and f2(∆) = f (∆ + 2π × 6.25MHz), respectively. The filter is designed such that both
f1(0) = f2(0) = 0, rejecting the coherent pump tone.

As a result, the four quadrature components that we extract after the digital data
processing correspond to measurement results of the complex valued operators (Sec-
tion 3.2.1)

X̂1,2 + iP̂1,2 ≡ a1,2 + h†1,2, (4.58)

with a1,2 =
∫ ∞
−∞

d∆ f1,2(∆)aout(∆) and h1,2 equivalently. a1 and a2 describe a pair of
signal and idler modes at the parametric amplifier output. The system noise modes
h1 and h2 are in thermal states with mean photon number Nnoise. We have verified
this by measuring 2D quadrature histograms for the noise modes while turning off the
pump tone, for which we observe perfectly circular symmetric Gaussian distributions
[Eichler11b], see Figure 4.14(a).

According to Eq. (4.18b) we expect a1 and a2 to be approximately in a two-mode
squeezed vacuum state exp{ra1a2 − ra†1a†2}|00〉 [Braunstein05]. The relative phase
between the two local oscillators has been chosen such that the squeezing parameter r
is real and related to the average gain by cosh2(r) ≈

∫ ∞
−∞

d∆| f1(∆)|2G∆.

The two-mode squeezed state is characterized by the covariances of the 4 quadrature
components ξ̂i ∈ {x̂1, p̂1, x̂2, p̂2} of the two modes, defined by a1,2 = x̂1,2 + ip̂1,2.
Quantum correlations for this state become most apparent in the relative "position"
x̂1 − x̂2 and the total "momentum" p̂1 + p̂2 variables, which are squeezed below the
standard vacuum limit 1/2 according to 〈(x̂1 − x̂2)2〉 = 〈(p̂1 + p̂2)2〉 = e−2r/2, while
each component itself is amplified 〈ξ̂2

i 〉 = cosh(2r)/4. Since the two-mode squeezed
state belongs to the class of Gaussian states, its Wigner function can be written as a
multivariate normal distribution [Braunstein05]

W(α) =
1

4π2
√

detV
exp

{
−

1
2
αV−1αT

}
(4.59)

with the vector of quadrature components α = (x1, p1, x2, p2) and the quadrature
covariance matrix V with elements Vi, j = 〈ξ̂iξ̂ j + ξ̂ jξ̂i〉/2 [Braunstein05]. The two-
mode phase space distribution is thus fully determined by the 4 × 4 covariance matrix
V, which describes the joint statistics of the amplitude fluctuations of the two modes.
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4.5 Observation of two-mode squeezing in the microwave frequency domain

Figure 4.14: (a) Quadrature histogram {X1, P1} when the pump tone is turned OFF given in
units of its maximal value. (b)-(e) Difference between quadrature histograms with pump tone
turned ON and OFF for 4 different quadrature pairs in the same units as (a).

To determine the elements of this matrix we detect the four quadrature components
as explained above in Eq. (4.58) and store the results in two-dimensional histograms
for the six possible pairs {X1, P1}, {X2, P2}, {X1, P2}, {X2, P1}, {X1, X2}, and {P1, P2}.
For each pair we first acquire a reference histogram with the pump turned OFF
(Figure 4.14(a)), which characterizes the quadrature distribution of the effective noise
modes h1,2 and a second histogram with the pump turned ON. The differences between
such histogram pairs, see Figure 4.14, show a systematic change in the detected
quadrature statistics when the resonator output in modes a1,2 changes from the vacuum
state to the state which is to be characterized. For the single mode histograms {X1, P1},
{X2, P2} we observe a phase independent increase in the quadrature fluctuations,
reflected in the higher probability of measuring larger quadrature values [Figure 4.14(b)
and (c)]. Since the increase in fluctuations is circular symmetric it corresponds to a
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4 Parametric amplification and vacuum noise squeezing

phase-insensitive amplification in each of the individual modes a1 and a2. However,
for the cross-histograms {X1, X2}, {P1, P2} we find an increase in the fluctuations along
one diagonal axes, indicated by the positive valued regions in the histogram differences
[Figure 4.14(d) and (e)], and a decrease in the other direction. Both these observed
features are characteristic for a two-mode squeezed state.

The measured data is further analyzed by separating the contributions of noise
modes h1,2 from those of modes a1,2. We calculate all possible expectation values
〈X̂iX̂ j〉ON,OFF and 〈X̂iP̂ j〉ON,OFF from the 12 measured pump ON and OFF histograms.
Using relations such as 〈x̂2

1〉 = 〈X̂2
1〉ON − 〈X̂2

1〉OFF + 1/4, which follow from Eq. (4.58),
we can determine all second order expectation values Vi, j.

The result for the covariance matrix is shown in Figure 4.15(a). Its diagonal elements
express the amplified individual quadrature fluctuations in both modes. Their values
are in good agreement with what we expect from the measured gain averaged over
the filter function. The non-vanishing off-diagonal elements describe the squeezing
correlations between the two modes and are important to demonstrate that the signal
and idler photons are entangled. As a criterion for non-classicality we determine the
total "momentum" fluctuations 〈( p̂1 + p̂2)2〉 and the relative "position" fluctuations
〈(x̂1 − x̂2)2〉, where we find both values squeezed below the standard quantum limit by
−2.25 ± 0.16 dB and −1.89 ± 0.13 dB, respectively. In addition, we have verified that
our measured covariance matrix fulfills the non-separability criterion formulated in
[Simon00].

We have further checked the influence of finite thermal fluctuations on the presented
results. In independent experiments [Fink10b] we have found n̄ ≈ 0.05 as an upper
bound for the thermal noise photon number at the input of the resonator. Evaluating
our measurement data, taking this amount of thermal fluctuations into account, results
in a reduction of the vacuum squeezing by only 10%. The amount of squeezing, that
we have reached after optimizing the pump parameters, is limited by (i) the minimal
filter bandwidth that can be implemented to detect the photons, (ii) the uncorrelated
noise added by the parametric amplifier due to internal losses, and (iii) the phase-
stability, which restricts us to operate the parametric amplifier at a point at which it
has relatively small gain [Castellanos-Beltran08].

We evaluate Eq. (4.59) to reconstruct the four-dimensional Wigner function W(α)
for the two modes. In Figure 4.15(b) and (d) we show a selection of characteristic
projections of W(α) on two-dimensional subspaces. The {x1, p1}-projection, which
describes the individual state of mode a1, is amplified vacuum as expected. Compared
to the theoretical vacuum Wigner function [Figure 4.15(c)] it has a larger variance,
indicating the phase-insensitive amplification of vacuum noise. The {x1, x2}-projection
is squeezed along the diagonal axis, visualizing the 2-mode squeezing correlations
between a1 and a2.
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Figure 4.15: (a) Measured quadrature covariance matrix V of the two-mode squeezed state
which allows to reconstruct the four-dimensional Wigner function. (b) and (d) show projections
of this function onto two-dimensional subspaces where the ellipses indicate the respective
standard deviations. (c) For comparison, we show the theoretical Wigner function of a vacuum
state and its corresponding standard deviation as a dashed circle also in (d).

In summary, we have measured the full quadrature covariance matrix of a two-mode
squeezed state and observed a reduction of quadrature noise in the variables x̂1 − x̂2
and p̂1 + p̂2 by approximately −2 dB below the standard quantum limit. This value
can be increased by realizing a parametric amplifier with larger bandwidth, which
furthermore allows for using the device as a low noise amplifier in other circuit QED
experiments (see Chapter 5). An important step towards future continuous variable
quantum computation with propagating microwave photons [Braunstein05] could be
a combination of parametric amplifiers with beamsplitters to spatially separate signal
and idler modes and create non-local entanglement [Menzel12].
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Chapter 5
Entanglement between a
superconducting qubit and
propagating microwave fields

A localized qubit entangled with a propagating quantum field is well suited to study
nonlocal aspects of quantum mechanics and may also provide a channel to commu-
nicate between spatially separated nodes in a quantum network. Here, we report the
on demand generation and characterization of Bell-type entangled states between
a superconducting qubit and propagating microwave fields composed of zero, one
and two-photon Fock states. Using low noise linear amplification and efficient data
acquisition we extract all relevant correlations between the qubit and the photon states
and demonstrate entanglement with high fidelity.

5.1 Entanglement with single microwave photons

One of the most fascinating aspects of quantum physics is the entanglement be-
tween two spatially separated objects sharing a common nonlocal wave function.
Propagating photons are ideal carriers for distributing such entanglement between
distant matter systems in a quantum network. Entanglement between photons and
stationary qubits has so far been exclusively studied at optical frequencies with single
atoms [Blinov04, Volz06, Stute12] and electron spins [Togan10, Gao12, De Greve12],
to interface stationary and flying qubits [Wilk07], to implement quantum teleporta-
tion [Olmschenk09, Moehring04] and to realize nodes for quantum repeaters [Yuan08]
and networks [Ritter12, Kimble08, Moehring07]. Rapid progress in the development
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5 Entanglement between a superconducting qubit and propagating microwave fields

of superconducting circuit based quantum technologies also renders propagating
[Houck07, Bozyigit11, Mallet11, Eichler11b, Menzel10, Wilson11, Hoi12, Flurin12]
and localized microwave photons [Haroche06, Hofheinz09] an attractive carrier of
quantum information. A major obstacle in measuring quantum correlations between
superconducting artificial atoms and itinerant photons has so far been the limited de-
tection efficiency at microwave frequencies. Here, we overcome this problem by using
a quantum limited parametric amplifier, as presented in Chapter 4, which significantly
improves the signal-to-noise ratio in both photon field and qubit measurement. In
combination with novel tomography methods, see Chapter 3, this allows us to measure
quantum correlations between itinerant microwave radiation and a stationary qubit
with high fidelity.

5.1.1 Experimental setup and generation of photon/qubit
entanglement

In a first experiment we create entangled states between a superconducting transmon
qubit and a single propagating microwave photon. The corresponding field a can be
described by two canonically conjugate variables X and P analogous to the position
and momentum variables of a mechanical quantum harmonic oscillator, as discussed
in Section 3.2.1. In contrast to most experiments performed at optical frequencies,
we simultaneously measure both continuous variables X and P rather than the photon
number of the field. This enables us to fully characterize quantum fields also beyond
the single photon level. In addition to the measurement of photon statistics of the
field, we determine the correlations between the measured qubit state and the observed
values X and P which clearly demonstrate that the qubit is entangled with the quantum
field.

We deterministically prepare 1.25×105 Bell states of the form |ψ〉 = (|0e〉+|1g〉)/
√

2
per second, in which a single excitation is shared coherently between a qubit and
a single propagating mode of a radiation field. Here, |g〉, |e〉 label the qubit basis
states and |0〉, |1〉, |2〉, ... the photon number states. To entangle the qubit and the
radiation field we first bring the qubit from the ground state |0g〉 to the excited
state |0e〉 by applying a 10 ns long π-pulse resonant with its transition frequency
ωge/2π = 6.442 GHz. By applying a magnetic flux pulse we then tune the qubit into
resonance with a transmission line resonator at frequency ωr/2π = 7.133 GHz, which
is strongly coupled to the qubit with rate g/2π = 65 MHz. After an interaction time
of τ = π/4g ≈ 2 ns we obtain the state (|0e〉 + |1g〉)/

√
2 up to a phase factor which is

omitted here for convenience.
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Figure 5.1: Schematic of the experimental setup. (a) A transmon qubit with individual charge
drive line (red) at frequency ωge and flux control line (green) is strongly coupled to a resonator
with a weakly coupled input port (γin/κ ≈ 0.001) driven at frequency ωr for qubit readout
(orange). The output field is coupled with rate κ into a transmission line (violet) and amplified
with a Josephson parametric amplifier (light blue) pumped at ωp through a directional coupler
with adjustable phase and attenuation for pump tone cancelation. The signal reflected off the
parametric amplifier passes through a chain of circulators into a low-noise semiconductor-
amplifier after which its two quadratures X, P are detected. (b) False color optical micrograph
of the sample. The transmon qubit (enlarged) consists of two capacitively coupled islands
connected by a pair of Josephson junctions. (c) False color micrograph of the Josephson
parametric amplifier. The array of Josephson junctions (enlarged) at the end of the quarter
wavelength resonator (light blue) provides the nonlinearity. (d) Pulse sequence used for the
experiment: (i) state preparation, (ii) field measurement and (iii) qubit read-out (see text for
details). (e) Measured probability distribution p(Q) of the qubit read-out quadrature Q for
prepared ground (blue), excited (red) and Bell (dashed white) states.
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5 Entanglement between a superconducting qubit and propagating microwave fields

The setup employed for this experiment is shown schematically in Figure 5.1(a)
with a micrograph of the sample shown in (b) and the experimental sequence in (d).
While the qubit on average keeps its excitation during its life time T1 = 1.0 µs, the
resonator field is emitted during the much shorter cavity decay time of 1/κ = 25 ns.
Note that, the interaction time τ during state preparation is small compared to 1/κ,
which itself is small compared to the qubit life and coherence times (T ∗2 = 220 ns).
This hierarchy of timescales (1/g < 1/κ < T1,T ∗2) guarantees that the entangled
state can be coherently prepared, and that the qubit remains in the excited state while
the photon is emitted into the propagating transmission line mode a of which both
conjugate field quadratures X and P are detected (Figure 5.1(d)). We have thus created
a superposition state, in which the single excitation is kept by the qubit and emitted
into the transmission line at the same time.

5.1.2 Parametric amplification and detection

We measure the quadratures X and P using a parametric amplifier operating close to
the quantum limit [Castellanos-Beltran08]. The amplifier is based on a quarter wave
transmission line resonator shunted by an array of Josephson junctions providing
the Kerr nonlinearity used in the parametric amplification process (Chapter 4), see
Figure 5.1(c). The maximal resonance frequency of the parametric amplifier is
ω̃0,max = 7.5 GHz and the effective Josephson energy of the array of SQUIDs is
EJ,max/h ≈ 520 GHz. Both values are extract from the measurement data shown
in Figure 5.2(a). The quality factor of the device is approximately Q ≈ 30 in the
relevant frequency range, as shown in Figure 5.2(b). Based on the extracted device
parameters and the number of SQUIDs in the array, we calculate the approximate Kerr
nonlinearity K/ω̃0,max ≈ −2 × 10−6 at the maximal resonance frequency.

In our experiment we operate the parametric amplifier in a phase-preserving mode,
in which both conjugate field quadratures are amplified equally as discussed in Sec-
tion 4.4.3. This is achieved by pumping the amplifier at a frequency 12.5 MHz detuned
from the center frequency of the detected photon pulse ωr/2π. The measured gain
for varying signal detunings from the pump frequency is shown in Figure 5.2(c) for
the chosen operation point. To determine the band pass filter effect caused by the
parametric amplifier, we have not only measured the absolute value of the gain, but
also the phase of the amplified test signal. From this measurement we extract both the
real and imaginary part of the gain coefficient gS ,∆, compare Eq. (4.19). At the center
frequency of the radiation field to be detected (see dashed line in (c)), the parametric
amplifier has a relatively moderate gain of G(ωr) = 16.5 dB. In this regime, the
effective detection efficiency is an order of magnitude higher than for typical setups
using transistor based amplifiers only, as discussed in more detail in Appendix A.6.

After amplification, we record the time dependent quadrature amplitudes {X(t), P(t)}
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Figure 5.2: (a) Measured resonance frequency of the parametric amplifier for varying magnetic
flux bias voltage (blues dots) and fit to theory (red line). (b) Measured quality factor Q as a
function of resonance frequency (blue dots) and expectation (red line) based on the extracted
Josephson energy EJ,max, the simulated coupling capacitance Cκ, and using Eq. (4.46). (c)
Measured absolute value, real and imaginary part of the complex amplitude gain gS ,∆ and fit
to the theoretical expectation (solids lines) in Eq. (4.19).

of the single photon field in a microwave frequency heterodyne detection setup, see
Section 2.4.3. Performing temporal mode matching by convolving {X(t), P(t)} with
an appropriate filter function (Section 3.2.2), we retain one pair of values {X, P} per
generated Bell state. After the field detection we perform qubit state tomography
(Figure 5.1(d)). We measure the qubit Bloch vector components 〈σx〉, 〈σy〉 and 〈σz〉

by rotating the qubit into the respective eigenbasis and then applying a coherent read-
out tone to the resonator. Due to the dispersive resonator frequency shift of χ/2π =

2.1 MHz the integrated phase quadrature Q of the transmitted time-dependent signal
Q(t) depends on the measured qubit state [Wallraff05, Gambetta07, Bianchetti09], as
explained in Section 5.3 in more detail. The probability distribution p(Q) is fitted
to a weighted sum of two independently measured reference distributions for the
ground and excited state to extract the excited state population in the chosen basis
(Figure 5.1(e)). Due to qubit decay during the time required for the measurement of
photon field quadratures after preparation of the entangled state, the single-shot qubit
readout fidelity making use of the same mode is limited to 37%. In future experiments
this aspect could be improved by using separate modes for photon generation and
qubit read-out, similar to Ref. [Leek10].

5.1.3 Measurement of photon-qubit correlations

We extract the correlations between qubit and photon in the generated Bell states by
recording 3-dimensional histograms of triplets {X, P,Q}, which count the number of
times for which the qubit read-out quadrature Q is measured in combination with
photon field quadratures X and P. Within the limitations of the available memory, we
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5 Entanglement between a superconducting qubit and propagating microwave fields

chose to discretize the histograms into 128 × 128 bins for the measured photon field
quadratures times 8 bins for the measured qubit quadrature. Efficient data acquisition
and generation of histograms is realized in real-time using field programmable gate
array electronics [Bozyigit11]. The resulting data, which is obtained after preparation
and detection of ∼ 3 × 108 Bell states, contains complete information about the
photon statistics as well as all relevant qubit-photon correlations. From the measured
histograms we extract the qubit population for each quadrature pair {X,P} by fitting
the histogram columns along the Q axis to the two reference histograms shown in
Figure 5.1(e).

Preparing two reference states |0g〉 and |0e〉 – for which the photon field is left in
the vacuum state and thus is not correlated with the qubit – we find that the qubit
population (blue: ground state, red: excited state) is independent of the detected
field quadratures X and P (see Figure 5.3(a,b)). This also indicates that there are no
correlations of technical origin between the qubit and photon field measurements.
The standard deviation of the photon field distribution δm = 1.84 is larger than the
quantum limit 1/

√
2, due to noise added by the amplifiers, losses in the cables and

microwave components, as well as finite mode matching efficiency, the combination
of which corresponds to an effective detection efficiency of η = 15% (see Section A.6
for details). Individual measurement results with large amplitude values (

√
X2 + P2 &

3δm) are unlikely, which causes the larger statistical uncertainty in the extracted qubit
populations at the boundary of the colored regions.

When Bell states |ψ〉 = (|0e〉 + |1g〉)/
√

2 are prepared we find a clear dependence
of the measured qubit Bloch vector on the measured field quadratures {X, P} (Fig-
ure 5.3(c)-(e)), in stark contrast to the results obtained for separable states. Measuring
the qubit in the σz basis we find a higher probability to observe the qubit in its ground
state at large measured field amplitudes (blue region) and a higher probability to
find the qubit in the excited state at small measured field amplitudes (red region in
Figure 5.3(c)). This observation is consistent with the expectation to either find the
qubit in the ground state when a photon is propagating in mode a or in the excited
state when a is in the vacuum state resulting in correspondingly small field amplitudes.
The fact that the measured qubit population is circularly symmetric in phase space,
i.e. it is independent of the phase of the propagating field, indicates that |g〉 and |e〉 are
correlated with Fock states – such as the single photon or the vacuum state.

To distinguish the coherent superposition of |0e〉 and |1g〉 in the Bell state from
a mere statistical mixture, we measure the equatorial components 〈σx〉 and 〈σy〉 of
the qubit Bloch vector by applying π/2 pulses to the qubit about the corresponding
axes and determine their correlations with the measured radiation field. We find that
whenever a positive field quadrature X > 0 is measured the qubit is more likely to be
found in a state with positive 〈σx〉 (blue region) and vice versa for negative values
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Figure 5.3: Photon-qubit correlations for a prepared Bell state. Qubit state population con-
ditioned on the measured photon field quadratures X and P for the indicated Bloch vector
components. {X, P} pairs for which no measurement results occured are shown in gray. White
circles indicate the standard deviation of the photon field distribution δm. (a)-(c) 〈σz〉 for the
reference states |0g〉, |0e〉 and the Bell state |ψ〉. For better visibility only, the data in subpanel
(c) is offset by its total mean ≈ 0.1 compensating for the qubit decay during photon detection.
(d)-(e) 〈σx〉 and 〈σy〉 for the Bell state |ψ〉.

(red region in Figure 5.3(d)). This observation can be understood, when rewriting the
Bell state |ψ〉 = [(|0〉 + |1〉)|gx〉 + (|1〉 − |0〉)|ex〉]/2 in the eigenbasis {|gx〉, |ex〉} of the
measurement observable σx: We note that for the field component (|0〉 + |1〉) we find
〈X〉 > 0 which is correlated with the state |gx〉, while |ex〉 is correlated with (|0〉 − |1〉)
for which 〈X〉 < 0. Equivalently, the 〈σy〉 component is correlated with the sign of the
P quadrature measurement as shown in Figure 5.3(e).

5.1.4 Analysis of entanglement correlations and state
reconstruction

Already in the raw measurement data we clearly observe the expected qubit-photon
correlations including their phase coherence. In order to further quantify the proper-
ties of the prepared Bell state we evaluate the statistical moments 〈(a†)namσi〉 from

123



5 Entanglement between a superconducting qubit and propagating microwave fields

Σ
x

Σ
y

Σ
z a

a
Σ

x

a
Σ

y

a
Σ

z

a�
a

a�
a
Σ

x

a�
a
Σ

y

a�
a
Σ

z a2

a2
Σ

x

a2
Σ

y

a2
Σ

z

a�
a2

a�
a2
Σ

x

a�
a2
Σ

y

a�
a2
Σ

z a3

a3
Σ

x

a3
Σ

y

a3
Σ

z

�a
�
�2

a2

�a
�
�2

a2
Σ

x

�a
�
�2

a2
Σ

y

�a
�
�2

a2
Σ

z

Σ
x

Σ
y

Σ
z a

a
Σ

x

a
Σ

y

a
Σ

z

a�
a

a�
a
Σ

x

a�
a
Σ

y

a�
a
Σ

z a2

a2
Σ

x

a2
Σ

y

a2
Σ

z

a�
a2

a�
a2
Σ

x

a�
a2
Σ

y

a�
a2
Σ

z a3

a3
Σ

x

a3
Σ

y

a3
Σ

z

�a
�
�2

a2

�a
�
�2

a2
Σ

x

�a
�
�2

a2
Σ

y

�a
�
�2

a2
Σ

z

0th
order

1st 2nd 3rd 4th

Re Im

〈(a†)namσi〉0.3

- 0.1

0.5

0.1

Figure 5.4: Expectation values 〈(a†)namσi〉 extracted from the qubit-photon field correlations
shown in Figure 5.3 and the measured photon field distribution. The real (imaginary) part of
these measured moments are shown in red (blue) and compared to the ideal Bell state (wire-
frame). The error bars are extracted from the standard deviation of repeated measurements.

the measured set of 3-dimensional histograms using the methods presented in Sec-
tion A.4.1. The resulting measured expectation values (colored bars) of products
between the Pauli operators σi and photon field operators a, a† are compared with the
theoretical values of an ideal Bell state (wireframes) up to order n+m = 4 in Figure 5.4.
Here we note that in comparison to earlier measurements [Bozyigit11, Eichler11b],
the increase in detection efficiency enabled by the parametric amplifier is essential for
the measurement of higher order expectation values which now also include products
of qubit and photon field operators.

The measured zeroth order moments 〈σi〉 represent the Bloch vector of the qubit.
Since all values are close to zero the qubit is, as expected, in the maximally mixed
state when the photon part of |ψ〉 is traced out. The small finite value of 〈σz〉 is due to
qubit decay during the time between state preparation and qubit tomography required
for performing photon tomography in the same mode. Finite first order expectation
values 〈aσi〉 are due to the expected correlations between the equatorial component
of the Bloch vector and the phase of the photon field, already observed in the raw
measurement data (Figure 5.3(d,e)). The finite second order moments show that the
single excitation is shared among qubit and photon field. Since the mean product of
excitations 〈a†aσz〉 is close to the mean photon number 〈a†a〉 we find that whenever
a photon is detected, the qubit is in the ground state for which σz takes the value 1.
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Figure 5.5: Real part of the measured (solid) and ideal (wireframe) density matrix ρ for the
Bell state |ψ〉 with fidelity F = 〈ψ|ρ|ψ〉 = 83%

We also find that all higher order moments with n + m = 3, 4 are close to zero within
their statistical errors, indicating that the photon field is a superposition of vacuum
and single-photon states only [Eichler12a]. In particular the measured anti-bunching
(〈(a†)2a2〉 = 0.023 ± 0.008) shows that there are no contributions of higher photon
number states [Bozyigit11]. Moments of higher order can also be determined from
the measured histogram data (not shown), albeit with statistical errors which depend
exponentially on increasing order [daSilva10].

We have also evaluated the density matrix ρ of the joint qubit-photon state from
the measurement data using a direct linear mapping from the moments to the density
matrix elements (Section A.4.1). In order to make use of the full measurement data and
to guarantee a completely positive density matrix we additionally apply a maximum-
likelihood procedure which estimates the most likely density matrix from measured
moments and their respective standard deviations up to order n+m = 8. This allows for
reconstructing the density matrix in a 10-dimensional Hilbert space including photon
number states up to |n〉 = |4〉. As already expected from the vanishing fourth order
moments, we find all number state populations with n > 1 close to zero (Figure 5.5).
The coherent superposition of the two contributing basis states |0e〉 and |1g〉 is reflected
in the large off-diagonal elements. Adjusting the overall local oscillator phase, the
elements of the imaginary part of the density matrix (not shown) have been minimized
to less than 0.023. The total fidelity of the reconstructed state compared to the ideal
Bell state |ψ〉 is F = 〈ψ|ρ|ψ〉 = 83%. The loss of fidelity is dominantly due to qubit
decay and decoherence during the 60 ns period between the state preparation pulse
and the final tomography pulse, which determines the time at which the qubit state is
characterized. We verify the entanglement between the photon field and the qubit by
determining the negativity [Vidal02] of the reconstructed density matrix N(ρ) = 0.34,
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5 Entanglement between a superconducting qubit and propagating microwave fields

which is bounded by zero for unentangled states and 0.5 for ideal Bell states.

5.1.5 Time-resolved correlations based on single shot qubit readout

We have studied qubit-photon correlations also within time-resolved measurements
for the prepared Bell state 1√

2
(|0e〉 + |1g〉). For this experiment, we have operated

the parametric amplifier in a phase-sensitive mode by setting the pump frequency
equal to the frequency of the readout tone. We repeat the experimental sequence
depicted in Figure 5.1(d) and store individual time-traces of the amplified quadrature
component X instead of three-dimensional histograms. The parametric amplifier
enables us to decide for each trace, whether the qubit is in the ground or the excited
state (Figure 5.6(a)). From these single shot measurements we are also able to extract
the residual excited state population of the qubit pth . 3%. Due to the finite qubit
decay during the delay time between state preparation and readout, the qubit may be
detected in the ground state although it was initially in the excited state.

Based on the individually measured time-traces we average the power 〈X2〉 in the
amplified quadrature X, as shown in Figure 5.6(b). We resolve correlations between
the qubit and the photon field by post-selecting those traces for which the qubit is
found in a specific state. Averaging only over those time-traces, for which the qubit
is found in the excited state, there is no photon flux visible (red). In contrast, if we
average conditioned on the qubit being initially in the ground state, we observe the
photon flux of a single photon emitted from the resonator (blue). The temporal shape
of the photon pulse is determined by the exponential decay of the cavity, the filtering
imposed by the parametric amplifier, and the additional digital filtering. The solid
line is the expected temporal envelope of the photon pulse based on the individually
determined response function. For comparison, we also show the measured photon
flux independent of the final qubit state (purple), and find approximately half of the
photons on average. These results clearly demonstrate that a photon is only emitted if
the qubit is initially in the ground state.

In order to measure the quantum coherence between the photon field and the qubit,
we readout the qubit in the σx basis by applying a π/2 rotation and determine the
mean quadrature amplitude 〈X〉 (Figure 5.6(c)). Averaging over all traces, independent
of the qubit state, we find the average amplitude close to zero (purple). In contrast,
if we select only those traces for which the qubit has been found in the excited state
when measuring in the σx basis, we observe a finite mean amplitude. This also agrees
with the expectation for a Bell state 1√

2
(|0e〉 + |1g〉), as explained in Section 5.1.3.
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Figure 5.6: Time-resolved measurement of photon-qubit correlations. (a) Individual time-
traces of the quadrature X when the qubit is prepared in the ground state (blue) and when
the qubit is prepared in the excited state (red). From the prepared excited states we have
selected only those traces, for which no spontaneous decay into the ground state has occurred.
(b) Average power 〈X2〉 in the amplified quadrature independent of the qubit state (purple
dots), conditioned on the qubit in the excited state (red dots), and conditioned on the qubit
being initially in the ground state (blue dots). The solid lines show the expected temporal
profile of the photon pulse, taking into account the measured parametric amplifier response
(Figure 5.2(c)) and the additional digital filtering.

5.2 Two-photon entangled states

To demonstrate the versatility of our state preparation, detection and reconstruction
scheme beyond existing experiments we have also prepared entangled states between
stationary qubits and multiple propagating photons such as |φ〉 = 1

2 (|1〉 + |2〉)|g〉 +
1
2 (|1〉 − |2〉)|e〉. For the preparation of such states we make use of the third energy level
| f 〉 of the transmon [Bianchetti10b]. Using this state preparation scheme, we are also
able to generate arbitrary photon superposition states of type cg |0〉 + c f |2〉, which
are disentangled from the qubit. The reconstruction of these states has already been
discussed in Section 3.4.1 in the context of photon state tomography. In the following
I explain, how these states have been generated.
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5 Entanglement between a superconducting qubit and propagating microwave fields

5.2.1 Mapping the f-level onto a two-photon state

We drive Rabi oscillations between the ground state |g〉 and the second excited state
| f 〉 of the transmon by applying a coherent pulse at frequency (ωge + ωe f )/2, see
inset of Figure 5.7(a). The state evolution of an initial ground state under this drive is
|g〉 → cos θ |g〉 + eiφ sin θ | f 〉. The effective Rabi angle θ of this two-photon transition
is proportional to the square of the drive amplitude, the pulse length and the coupling
capacitance between qubit and gate line. The phase φ is controlled by the phase of the
drive field. For θ = π/2 the qubit state is brought into the equal superposition state
(|g〉 + eiφ | f 〉)/

√
2 while for θ = π the qubit is prepared in the | f 〉 state.

By applying a sequence of two flux pulses to the transmon we map an arbitrary
initial superposition state cg |g〉 + c f | f 〉 onto the corresponding resonator state cg |0〉 +

c f |2〉. The first flux pulse of amplitude V1 and length τ1 brings the ωe f transition
into resonance with ωr, see Figure 5.7(b). According to the interaction Hint/~ =

ige(a† |e〉 〈 f | − h.c.) between resonator and the relevant transmon levels (Eq. (2.23)),
the initial f -level component evolves as cos(geτ1) | f 0〉+ sin(get) |e1〉. After interaction
time τ1 = π/ge the initial state is thus transformed into

cg |0g〉 + c f |0 f 〉 → cg |0g〉 + c f |1e〉 . (5.1)

The second flux pulse of amplitude V2 and length τ2 brings the ωge transition into
resonance with ωr, see Figure 5.7(b). When chosing τ2 = π/

√
2g the remaining

excited state state population is transferred into the resonator and we are left with the
desired state (cg |0〉 + c f |2〉) ⊗ |g〉. The total interaction time required for this state
preparation is approximately 5 ns and thus still much shorter than the cavity decay
time 1/κ ≈ 25 ns. The radiation field decays into the transmission line, where we
detect it linearly using the parametric amplifier shown in Figure 5.1.

In a first experiment we measure the average photon number of the integrated
output field for various initial Rabi pulse amplitudes θ, as shown in Figure 5.7(c).
The photon number is proportional to the initial f -level population, as expected for
the employed mapping. Note, that all the flux pulse parameters τ1, τ2,V1,V2 have
been calibrated, by maximizing the total emitted photon number. When averaging the
mean amplitude, we find 〈a〉 close to zero for all Rabi angles θ. This is expected for
superposition states, which contain only even or only odd number states. We verify
the quantum superposition character of the prepared state by measuring the operator
average 〈a2〉. While for the Fock state |2〉 at θ = 0, 〈a2〉 is close to zero it becomes
maximal for the equal superposition state 1√

2
(|0〉 + |2〉). For the specific preparation

angles θ = π/2 and θ = π, we have also performed full quantum state tomography, as
shown in Figure 3.10.
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Figure 5.7: (a) Measurement and fit of Rabi oscillations between the ground state |g〉 and the
second excited | f 〉 of the transmon. (b) Schematic of the pulse sequence used to map the f
state onto a two-photon state in the cavity. (c) Measurement of the mean amplitude 〈a〉, the
mean photon number 〈a†a〉, and the term 〈a2〉 for the integrated field emitted from the cavity
after applying the preparation sequence in (b).

5.2.2 State reconstruction of a two-photon entangled state

We have also prepared two-photon states which are maximally entangled with the qubit.
For this experiment, we initially bring the system into the |0 f 〉 state. We then apply
the flux pulse sequence described in Figure 5.7, but chose the length of the second flux
pulse by a factor of two shorter, τ2 = π/

√
8g. The resulting state 1√

2
(|1e〉 + |2g〉) is

then entangled with the qubit, because only half of the e-level population is transferred
into the resonator during the second flux pulse. An additional π/2 pulse applied at
the g-e transition frequency creates the state |φ〉 = 1

2 (|1〉 + |2〉)|g〉 + 1
2 (|1〉 − |2〉)|e〉.

Note that this state preparation sequence can be interpreted as the generation of the
separable state 1

2 (|1〉 + |2〉) ⊗ (|g〉 + |e〉) and an entangling controlled phase gate, which
changes the sign of the two photon component |2〉 only if the qubit is in the excited
state. The entanglement between photon field and qubit thus becomes apparent in
the negative sign of the |2e〉 component in |φ〉. We characterize the prepared state
using the methods described above, which results in a final density matrix with fidelity
F = 80% compared to the ideal one (Figure 5.8). The negativity of N(ρ) = 0.33
determined from the reconstructed density matrix indicates the entanglement of the
propagating multi-photon state with the stationary qubit.

In summary, we have demonstrated the generation and detection of entanglement
between a superconducting qubit and a propagating microwave field. The development
of sensitive detection techniques for the measurement of photon-qubit quantum corre-
lations is an important step towards using itinerant microwave photons as a quantum
information carrier, e.g. for connecting spatially separated superconducting circuits or
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2 (|1〉 − |2〉)|e〉 with fidelity F = 〈ψ|ρ|ψ〉 = 80%

other systems interacting with microwave photons. The development of microwave
photon counters [Chen11] and the high level of control over superconducting circuits
put the realization of microwave photon based quantum network experiments within
reach.

5.3 Coherent state Entanglement based on dispersive
interaction

In the context of qubit-field entanglement we have also theoretically investigated
correlations between the qubit and the output field of a cavity for dispersive inter-
action. These calculations – which are inspired by recent experiments discussed in
Ref. [Hatridge12] – give new insight into the dispersive measurement process and
could be relevant for quantum networking with continuous variable states. Here, we
specifically calculate quantum correlations between the integrated output field of a
driven cavity and a dispersively coupled qubit. This investigation allows us to charac-
terize the post-measurement qubit state conditioned on the outcome of a finite-strength
dispersive measurement. Our results imply that for any set of parameters an optimal
filter function exists, for which the integrated field and the qubit share a pure state.

5.3.1 Motivation

The disturbing effect of a (partial) measurement on a quantum object is in principle
known from the observed result, which in case of an ideal detector allows for a perfect
determination of the post-measurement state. In general, the determination of this
state requires not only monitoring of the full time-resolved measurement record but
also knowledge of the intrinsic system dynamics. Jointly, this information can be used
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5.3 Coherent state Entanglement based on dispersive interaction

to evaluate the final state by solving the corresponding stochastic master equation
[Wiseman10].

In many cases of practical interest (e.g. digital quantum feedback and post-selection)
it is more convenient to determine the final system state from the measurement result of
a single integrated mode instead of the full time record [Korotkov11]. This detection
of a narrow band mode does, however, not necessarily preserve the full information
about the post-measurement state. For a system composed of a driven cavity and
a dispersively coupled qubit, we therefore explicitly calculate quantum correlations
between an integrated output field of finite duration and the final qubit state.

These investigations are of particular interest, since they clarify, if the dispersive
interaction scheme described below is well suited to create entanglement between
a stationary qubit and a flying qubit, similarly to the discussion in Section 5.1 but
with coherent fields instead of Fock states. Furthermore, the described problem has
recently been studied experimentally in Ref. [Hatridge12], for which the following
calculations may provide a theoretical basis to optimize the experimental settings for
observing clear features of quantum coherence.

5.3.2 Master equation and input-output relation

We consider a qubit at fixed frequency, which is initially prepared in a superposition
state. This qubit interacts dispersively with a coherently driven cavity. Due to the
cavity-qubit dynamics it is not obvious if the integrated output field contains all
information about the final qubit state. In an interaction picture, the evolution of the
density matrix for the combined qubit-cavity system is modeled by the following
master equation

ρ̇ = Lρ ≡ −i[χσza†a + Ω(t)(a† + a), ρ]

+κ(aρa† −
1
2
ρa†a −

1
2

a†aρ), (5.2)

where the first line in Eq. (5.2) describes the unitary evolution under the dispersive
interaction χ and the cavity drive Ω(t) ∈ R. The second line accounts for the cavity
emission κ into a transmission line by an appropriate Lindblad term. Note, that we
assume the qubit decay and dephasing rates to be zero.

At time t = 0 the qubit is prepared in the state 1√
2
(|g〉 + |e〉), the cavity is in the

vacuum state |0〉, and a drive Ω(t) = Ω0 is turned on for time T and then turned off

again (Figure 5.9). During this time a cavity field builds up, which due to the dispersive
interaction becomes correlated with the qubit. At the same time the cavity field decays
into the transmission line according to the input-output relation [Gardiner85]

aout(t) =
√
κa(t) − ain(t) (5.3)
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Figure 5.9: Schematic of the dispersive interaction scheme. A coherent drive field of amplitude
Ω0 is applied to the weakly coupled input port of the cavity for time T . The emerging intra-
cavity field dispersively interacts with a qubit and decays with rate κ into an integrated
transmission line mode A which is detected linearly using an appropriate filter function f (t)
for integration.

The single field mode A, which is associated with the radiation pulse leaving the cavity,
is now defined as (Section 3.2.2)

A ≡
∫

dt f (t) aout(t), (5.4)

where f (t) is a normalized filter function in the time-domain which matches the
temporal shape of the pulse. Note that a measurement of the integrated output field
correponds to a measurement of the field quadratures of this mode A. In the following
the optimal filter function f (t) is determined part of the following investigations.

5.3.3 Criterion for quantum coherence

We are interested in the phase coherence between the integrated field A and the
qubit state. In order to make the discussion independent of the specific measurement
device (i.e. phase-sensitive or phase-preserving amplifier), we calculate the general
quantum state ρ shared between mode A and the qubit at time tQ when the interaction
is completed. The interaction is completed once the photon field has completely left
the cavity (Figure 5.9), which is approximately a few cavity decay times after the time
T when the drive is turned off. For the numerical calculations discussed below we
have set tQ = T + 8/κ.

We first derive the most general form of ρ given the dynamics defined by Eq. (5.2).
Since the qubit population is a constant of motion 〈σ̇z〉 = 0, a ground (excited) state
at time tQ has always been a ground (excited) state at earlier times and thus the
dynamics in the |g〉 and |e〉 subspaces are those of driven harmonic oscillators shifted
in frequency by either plus or minus χ. As a result, the output fields associated with
the ground and excited states are coherent fields α and β independent of the chosen
filter function [Wahyu Utami08]. This drastically reduces the space of possible states
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5.3 Coherent state Entanglement based on dispersive interaction

to

ρ = (|αg〉〈αg| + |βe〉〈βe| + C|αg〉〈βe| + C∗|βe〉〈αg|)/2.

(5.5)

This state is fully determined by the three parameters α, β and C, which are related to
operator expectation values by 2〈Aσz〉 = α − β and 2〈A〉 = α + β and

C = 2
〈A†σ−(tQ)〉
α∗〈α|β〉

. (5.6)

These identities immediately follow from Eq. (5.5). Note, that σ− is not a constant
of motion 〈σ̇−〉 , 0, and thus it is important that we evaluate the coherence between
mode A and the final qubit state at time tQ.

Once A, 〈Aσz〉 and the correlator 〈A†σ−(tQ)〉 are determined, we know everything
about ρ and thus all the desired correlations between qubit and integrated output field.
Furthermore, C is a direct measure of the purity of the state Tr[ρ2] = (1 + |C|2)/2,
which is 1 for a pure state and 1/2 for the totally incoherent state.

5.3.4 Calculation of qubit - field correlations

In order to evaluate 〈A†σ−(tQ)〉 we express A in terms of the intra-cavity field operator
by using Eq. (5.3) and Eq. (5.4)

〈A†σ−(tQ)〉 =

〈∫
dt f (t)a†out(t)σ

−(tQ)
〉

=
√
κ

∫
dt f (t) 〈a†(t)σ−(tQ)〉 (5.7)

The correlation between the integrated output field and the final qubit state is thus iden-
tical to the mode-matched average of the two-time correlator 〈a†(t)σ−(tQ)〉 between
the intra-cavity field and the qubit. Based on Eq. (5.2) and the quantum regression
formula [Carmichael99]

〈a†(t)σ−(tQ)〉 = tr{σ−(0)eL(tQ−t)[ρ(t)a†(0)]} (5.8)

we can evaluate this correlator and therefore the qubit-field coherence C numerically.
Similarly, we also calculate correlations between the σz - component of the Bloch
vector and the cavity field.

In Figure 5.10 we show an example for the simulated correlation dynamics resulting
from Eq. (5.8) for both σz and σ−. As expected, the σz component of the Bloch vector
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Figure 5.10: Simulated correlation dynamics between the qubit state at time tQ = 16/κ and
the cavity field at variable time t for parameters (Ω0 = 0.45κ, χ = 0.93κ, T = 8/κ).

becomes strongly correlated with the cavity field 〈a†(t)σz(tQ)〉. This correlation is
used in dispersive readout schemes to determine the σz value of the qubit from a
measurement of the output field [Wallraff04, Blais04]. It persists in the limit of long
measurements T → ∞ and grows linearly with increasing drive strength Ω0. A finite
correlation also remains between the equatorial Bloch vector component and the field,
which can be interpreted as a photon number dependent AC Stark shift making the
phase of the qubit dependent on the total photon number [Gambetta06].

In the next step we determine the optimal filter function f (t), which maximizes
the correlation between the qubit state and mode A given a specific drive pulse (Ω0,
T ). The maximal correlation is reached if the distance between the two coherent
amplitudes |α − β| is maximized. Since this distance is given by

|α − β|/2 = 〈Aσz〉 =
√
κ

∫
dt f (t) 〈a(t)σz〉 (5.9)

the choice
f (t) ∝ 〈a†(t)σz〉 (5.10)

maximizes |α − β| and thus maximizes the correlation between the integrated field and
σz. It turns out that this optimal filter function also maximizes the correlation with
σ−, such that C = 1 and ρ is pure. In Figure 5.11 we show the simulated coherence C
as a function of drive strength Ω0 for drive time T = 8/κ. The coherence C is found
always at its optimal value 1, even if the mean photon number n̄ in the resonator is
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Figure 5.11: Absolute values of the coherence C (red) and the mean photon number stored
in the cavity n̄ ≈ |α|2/T (black) vs. drive amplitude Ω0. The parameters are the same as in
Figure 5.10. As indicated by the decreasing overlap |〈α|β〉| and the schematic phase space
representation in the top panel, the probability for projecting on a final qubit state with equal
ground and excited state population decreases with stronger drive.

increased. We have simulated C for different parameter sets {χ,T,Ω0} and always
found full phase coherence.

5.3.5 Experimental aspects

We finally discuss the experimental accessibility of the quantum coherence C between
qubit and integrated field. We have simulated the influence of imperfect filtering
and found that the coherence is sensitive to the mode matching efficiency. In an
experiment one therefore has to consider the implementation of an optimal filter
function. Especially for short drive pulses the deviation between the optimal filter and
a square filter is large. Note that in contrast to cases where decay and state preparation
are separated in time (compare Section 3.2.2 and Eq. (3.2.2)), here, the non-optimal
filtering changes the overall statistical properties (i.e. the ratio between moments of
equal order in A is not independent of the filter function).

From the definition of C in Eq. (5.6) we furthermore see that in the ideal case C = 1,
the measurable expectation value 〈A†σ−(tQ)〉 is proportional to the overlap 〈α|β〉. As a
result, the measured quantity becomes exponentially smaller with increasing coherent
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state separation (compare top row of Figure 5.11) and it requires more and more
sensitivity to resolve the quantum superposition character. This is not surprising,
since it is difficult to resolve the coherence of two superimposed "macroscopic" or
classical states. Nevertheless, there is an interesting intermediate regime in which the
overlap is not too large (i.e. significant entanglement present) but still large enough to
detect it with current measurement capabilities and using the methods presented in
Section 5.1.4.

In summary, we have calculated the full quantum state shared among the qubit and
the traveling photon field A after dispersive interaction. If appropriate temporal mode
matching is performed the system is described by a pure superposition state |αg〉+ |βe〉,
independent of the dispersive interaction parameters. This is not obvious and might be
rather special for the dispersive system dynamics. It would be interesting to investigate
further, which property the system dynamics have to satisfy in general, to construct a
single output mode A which shares a pure state with the qubit. Is it the double QND
property (i.e. a†aσz which commutes with σz and with a†a)? What happens if we add
a Kerr nonlinear term (a†)2a2 to the Hamiltonian [Laflamme12]? What, if we replace
the dispersive interaction by a resonant interaction a†σ− + aσ+? Answering these
questions would give new insight into input-output theory of quantum fields and could
help in quantifying the post-measurement qubit state for other readout mechanisms.

136



Chapter 6
Outlook

In the present thesis we have developed a powerful experimental and theoretical
toolbox for the control and detection of quantum microwave radiation. The main
results of the underlying research are the on-demand generation of various nonclassical
fields, the unveiling of their quantum nature [Eichler11b, Eichler11a, Eichler12a], the
observation of entanglement between a single photon and a superconducting qubit
[Eichler12b], and the tomographic characterization of two-photon interference at a
beamsplitter. Our experiments define the current state-of-the-art in quantum control
and measurement of propagating microwave fields.

The formulated and implemented concepts for detecting microwave field statistics
have a wide range of potential applications and will likely stimulate their further
investigations. The developed methods may for example be useful for exploring
collective phenomena of artificial atoms coupled to either a common cavity mode
[Mlynek12] or a continuum of modes [Astafiev10, Hoi12]. Characteristic features
of these systems typically become apparent in the fluorescent radiation. Prominent
examples are photon blockade [Imamoğlu97, Lang11] and superradiance of atom
clouds [Gross82]. More recently, it has been proposed to study quantum many-body
physics in superconducting circuits [Houck12]. An example is the prediction of
Majorana modes in parametrically coupled cavity arrays [Bardyn12]. In these settings,
the measurement of photon statistics could provide an essential tool for revealing
quantum many body correlations.

The accessibility of microwave field correlations beyond the Gaussian level is
not limited to circuit QED experiments. Also other systems, such as quantum dots
[Frey12], electron spin ensembles [Kubo11, Wu10], molecular electronic devices
[Puebla-Hellmann12], and electromechanical systems [Teufel11], naturally interact
with radiation in the microwave frequency range. Applying the developed measure-
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ment techniques may lead to a better understanding of physical processes also in
these systems. Furthermore, the derived statistical methods could prove to be useful
in the context of full counting statistics [Lambert10] and in experiments at optical
frequencies with finite detection efficiency [Appel07].

The developed on-demand single photon source in combination with on-chip
beamsplitters, also put the realization of linear optics based quantum computation
[Knill01] with microwave photons within reach. We have experimentally verified
desirable properties such as anti-bunching and indistinguishability of the generated
photons. To finally achieve a quantum speedup in linear optics based quantum
computation, single photon counters are required. While a number of proposals
[Romero09, Peropadre11b, Poudel12] and a proof-of-principle experiment [Chen11]
for the detection of single microwave photons exist, their performance has to be fur-
ther tested and optimized. Realizing the existing proposals or alternative schemes for
microwave photon counting could significantly extend the range of potential quantum
optics experiments with microwaves.

A significant part of the doctoral research presented here was dedicated to the
development of a Josephson parametric amplifier. We have demonstrated the entan-
glement between signal and idler photons emitted from this device, which verifies
its near quantum limited operation and turns it into a major building block for con-
tinuous variable quantum optics [Braunstein05]. Recently, these ideas have been
further pursued to demonstrate continuous variable entanglement in spatially sep-
arated modes [Flurin12, Menzel12]. Beyond the use of parametric amplifiers for
generating squeezed vacuum fields, they are practical devices to improve the efficiency
in linear detection schemes. The detailed understanding of relations between amplifier
characteristics and circuit design parameters have enabled us to build quantum limited
parametric amplifiers which exhibit a high gain-bandwidth product as well as large
tunability and dynamic range. In combination with practical hardware and software
calibration tools, these devices have recently enabled the realization of quantum
feedback [Riste12b, Vijay12] and quantum teleportation experiments in our lab. The
number of setups in our laboratory with parametric amplifier in the detection chain is
rapidly increasing.

To date, superconducting circuits are one of the most promising environments
for the realization of quantum information processing tasks [Mariantoni11a, Reed12,
Fedorov12, Dewes12], which have thus far mainly been investigated on individual
devices. Superconducting circuits could, however, also be used for exploring quantum
network and communication schemes [Kimble08, Ritter12]. The possibility to syn-
thesize, guide and detect microwave radiation with high efficiency make microwave
photons a viable quantum information carrier over intermediate distances. Larger
distances between network nodes could be bridged by using a room temperature link
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based on coherent conversion from microwave to optical photons or by using suffi-
ciently cold and lossless microwave waveguides. With the observation of photon-qubit
entanglement and Hong-Ou-Mandel interference we have realized the main building
blocks for the generation of heralded entanglement between different nodes in quan-
tum repeaters and networks [Moehring07, Duan10]. Alternatively, the deterministic
generation of entanglement could be explored in future experiments by ideal state
transfer [Cirac97, Jahne07] based on resonators with tunable decay rate [Yin12] or
stimulated Raman adiabatic passage schemes [Siewert04].
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Appendix A
Appendices

A.1 Characteristic functions, moments and cumulants

Here, I discuss the efficient solution of equations of the form

〈(Ŝ †)nŜ m〉 =

n,m∑
i, j=0

(
m
j

)(
n
i

)
〈(a†)ia j〉〈hn−i(h†)m− j〉.

(A.1)

We consider the case where both 〈(Ŝ †)nŜ m〉 and 〈hn(h†)m〉 are known and where
〈(a†)ia j〉 is to be determined. Equivalently, 〈hn(h†)m〉 can be determined from known
〈(Ŝ †)nŜ m〉 and 〈(a†)ia j〉. Eq. (A.1) is a set of linear equations which could be solved
numerically for each specific set of moments. However, the following approach allows
us to generate analytical expressions to arbitrary order. We introduce the characteristic
functions

CS ≡ 〈eλŜ †e−λ
∗Ŝ 〉 =

∑
i, j

(−λ∗) jλi

i! j!
〈(Ŝ †)iŜ j〉

Ca ≡ 〈eλa†e−λ
∗a〉 =

∑
i, j

(−λ∗) jλi

i! j!
〈(a†)ia j〉

Ch ≡ 〈eλhe−λ
∗h†〉 =

∑
i, j

(−λ∗) jλi

i! j!
〈hi(h†)

j
〉, (A.2)
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which, by construction, are related to the statistical moments by partial derivatives
with respective to λ

〈(a†)nam〉 = ∂n
λ∂

m
−λ∗Ca

∣∣∣∣
λ=0

, (A.3)

and analogously for moments in Ŝ and h. Due to the identity

CS = 〈eλŜ †e−λ
∗Ŝ 〉 = 〈eλ(a+h†)†e−λ

∗(a+h†)〉 = 〈eλa†e−λ
∗a〉〈eλhe−λ

∗h†〉 = CaCh

for uncorrelated a and h, we can explicitly express

〈(a†)nam〉 = ∂n
λ∂

m
−λ∗

CS

Ch

∣∣∣∣
λ=0

= ∂n
λ∂

m
−λ∗

∑
i, j

(−λ∗) jλi

i! j! 〈(Ŝ
†)iŜ j〉∑

i, j
(−λ∗) jλi

i! j! 〈h
i(h†) j

〉

∣∣∣∣∣∣
λ=0

(A.4)

in terms of 〈(Ŝ †)nŜ m〉 and 〈hn(h†)m〉. The last expression in Eq. (A.4) can be solved
with symbolic mathematics software up to a desired order. Note that the summation
in the last line of Eq. (A.4) only needs to be evaluated up to the maximal desired
order. For example, the moments 〈(a†)nam〉 up to order n,m ∈ {0, 1, 2} only depend on
moments 〈(Ŝ †)nŜ m〉 and 〈hn(h†)m〉 up to the same order. Note that the same procedure
can be extended to extract the moments in the two-channel case from Eq. (3.58).

The derived relation can be reexpressed in an elegant way, by introducing the
cumulants as derivatives of the natural logarithm of the characteristic functions, e.g.

〈〈(a†)nam〉〉 ≡ ∂n
λ∂

m
−λ∗ ln Ca

∣∣∣∣
λ=0

.

With this definition we find

〈〈(a†)nam〉〉 = ∂n
λ∂

m
−λ∗ ln

(
CS

Ch

) ∣∣∣∣
λ=0

= ∂n
λ∂

m
−λ∗ (ln CS − ln Ch)

∣∣∣∣
λ=0

= 〈〈(S †)nS m〉〉 − 〈〈hn(h†)m〉〉. (A.5)

As expected, for a sum of two independent random variables a = S −h†, the cumulants
are additive.
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A.2 Probability distribution for two channel complex
envelopes

Here we calculate the joint probability distribution of the complex envelopes in a
two channel detection scheme along the lines of Ref. [Agarwal94]. By definition
the probability distribution of the measurement data S 1, S 2 is given by the Fourier
transform of the characteristic function

P(S 1, S 2) =
1
π4

∫
z1,z2

ez∗1S 1+z∗2S 2−z1S ∗1−z2S ∗2χS S (z1, z2). (A.6)

where

χS S (z1, z2) =

〈
ez1Ŝ †1+z2Ŝ †2 e−z∗1Ŝ 1−z∗2Ŝ 2

〉
. (A.7)

By substituting the operator Eqs. (3.41) for Ŝ 1 and Ŝ 2 we find

χS S (z1, z2) = (A.8)

χa(z1 + z2)χv(z1 − z2)χh1(−
√

2z∗1)χh2(−
√

2z∗2)

where we introduced the characteristic functions for the four different modes as

χa(z) = 〈eza†e−z∗a〉 =

∫
β

Pa(β)ezβ∗−z∗β (A.9)

χv(z) = 〈ezv†e−z∗v〉 (A.10)

χhi(z) = 〈e−z∗hiezh†i 〉 =

∫
β

Qi(β)ezβ∗−z∗β (A.11)

We can simplify these expressions by introducing the following physical assump-
tions. First, mode v is assumed to be in the vacuum state. In this case its characteristic
function is the identity and we have

χS S (z1, z2) = χa(z1 + z2)χh1(−
√

2z∗1)χh2(−
√

2z∗2). (A.12)

Substituting this equation and the integral forms of the characteristic functions in the
definition of P(S 1, S 2) we get

P(S 1, S 2) =

∫
β,η,γ

Pa(β)Q1(η)Q2(γ) D, (A.13)
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where

D = π−4
∫

z1

exp(z1(
√

2η + β∗ − S ∗1) − c.c.))∫
z2

exp(z2(
√

2γ + β∗ − S ∗2) − c.c.)).

=
1
4
δ(η∗ +

β − S 1
√

2
)δ(γ∗ +

β − S 2
√

2
), (A.14)

which reduces Eq. (A.13) to

P(S 1, S 2) =
1
4

∫
β

Pa(β)Q1

(
S ∗1 − β

∗

√
2

)
Q2

(
S ∗2 − β

∗

√
2

)
. (A.15)

A.2.1 Thermal noise

In the next step we assume that the noise modes h1, h2 are in thermal states
e−|α|

2/Ni+1/π(Ni + 1) [Cahill69b] with mean photon numbers N1,N2. The probability
distribution of the measurement data is then

P(S 1, S 2) =

∫
β

Pa(β)
exp

(
−
|S 1−β|

2

2(N1+1) −
|S 2−β|

2

2(N2+1)

)
4π2(N1 + 1)(N2 + 1)

. (A.16)

Comparing this with the formula for the s-parametrized quasi-probability distribution

Wa(S̄ , s) =
2π−1

1 − s

∫
β

Pa(β) exp
(
−

2|S̄ − β|2

1 − s

)
(A.17)

we can identify the relation

P(S 1, S 2) =
1

2πNtot
e−
|S 1−S 2 |

2

2Ntot Wa(S̄ , s) (A.18)

by defining

S̄ =
N1 + 1

Ntot
S 1 +

N2 + 1
Ntot

S 2, (A.19)

s = −1 −
4 N1N2 + 2 N1 + 2 N2

Ntot
, (A.20)

Ntot = N1 + N2 + 2 . (A.21)
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If we have the same noise level on both channels N1 = N2 = N0, we find s = −1− 2N0
and thus

P(S 1, S 2) =
e−
|S 1−S 2 |

2

4(N0+1)

4π(N0 + 1)
Wa

(S 1 + S 2

2
,−1 − 2N0

)
(A.22)

In the case of quantum limited detection N1 = N2 = 0 we have s = −1 and the distri-
bution of our measurement data corresponds to the canonical positive P-representation
of mode a

P(S 1, S 2) =
1

4π
e−
|S 1−S 2 |

2

4 Qa

(S 1 + S 2

2

)
. (A.23)

A.2.2 Equivalence to canonical positive P function

To prove that Eq. (A.18) is also a positive P function when the thermal noise levels
are unequal N1 , N2 we show that [Braunstein91]

1
π

∫
S 1,S 2

P(S 1, S 2)
〈α|S 1〉〈S 2|α〉

〈S 2|S 1〉
� Q(α). (A.24)

Using Eq. (A.16), the left hand side of Eq. (A.24) is

∫
β,S 1,S 2

Pa(β)
exp

(
−
|S 1−β|

2

2(N1+1) −
|S 2−β|

2

2(N2+1)

)
4π3(N1 + 1)(N2 + 1)

〈α|S 1〉〈S 2|α〉

〈S 2|S 1〉

(A.25)

This is a multi-dimensional Gaussian integral in the variables S 1, S 2 and can be solved
to give

1
π

∫
β

Pa(β)e−|β−α|
2
, (A.26)

which is exactly the Q function.
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A.3 Relation between POVM and quasi-probability
distribution

We verify Eq. (3.38) by the following chain of identities

Tr[ρaΠ̂
[ρh]
α ] = Tr[

1
π
ρaTαρ̃hT †α]

= Tr[
1
π

∫
β

∫
γ

Pa(α)Ph(−γ∗) |β〉 〈β|Tα |γ〉 〈γ|T †α]

= Tr[
1
π

∫
β

∫
γ

Pa(α)Ph(−γ∗) |β〉 〈β| |γ + α〉 〈γ + α| ]

=
1
π

∫
β

∫
γ

Pa(β)Ph(α∗ − γ∗)e−|γ−β|
2

=
1
π

∫
γ

Qa(γ)Ph(α∗ − γ∗) (A.27)

A.4 Joint Tomography Scheme for a Qubit - Photon Field
System

A.4.1 Qubit state tomography

In order to describe the joint tomography scheme we first discuss the concepts of qubit
tomography. For the reconstruction of the qubit density matrix ρσ one measures the
Pauli expectation values 〈σi〉 along the different spin axes σi ∈ {σx, σy, σz} which in
the measurement basis {|gz〉, |ez〉} are represented by the corresponding Pauli matrices.
After state preparation the qubit is rotated such that the desired spin component σi

points along the measurement axis. This rotation is followed by a read-out procedure
during which the measurement result is encoded in a classical quantity q [Wallraff05].
In the context of circuit QED single shot read-out [Mallet09, Vijay11] is not always
available and q can take a continuous spectrum of values where depending on the
qubit state each value has a probability Di(q) to occur. Here the index i ∈ {x, y, z}
specifies the measurement basis.

The distribution Di(q) obtained after repeating the measurement many times can be
fitted to the weighted sum of 2 reference distributions pg(q) for the ground and pe(q)
for the excited state

Di(q) �
1 − 〈σi〉

2
pe(q) +

1 + 〈σi〉

2
pg(q) (A.28)

to extract the Pauli expectation values 〈σi〉. Based on these values the density matrix
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can then be determined as ρσ = 1
2 (1+

∑
i〈σi〉σi). Note that instead of using Eq. (A.28)

the qubit population can also be extracted from the mean values of q [Bianchetti09]
as done in many experiments .

A.4.2 Joint tomography

A joint tomography scheme is expected to allow for a full characterization of the
system also when photon field and qubit are correlated with each other. The goal is to
determine all matrix elements 〈s, n|ρσ,a|s′,m〉 of the joint density matrix ρσ,a where
s, s′ ∈ {gz, ez} label the qubit basis states and n,m the photon field number states. It can
be shown that these matrix elements are uniquely determined by the set of moments
〈(a†)namσi〉 in the following way

〈gz,m|ρσ,a|gz, n〉 =
1
2
M

(
〈(a†)nam〉 + 〈(a†)namσz〉

)
〈ez,m|ρσ,a|ez, n〉 =

1
2
M

(
〈(a†)nam〉 − 〈(a†)namσz〉

)
〈ez,m|ρσ,a|gz, n〉 =

1
2
M

(
〈(a†)nam(σx + iσy)〉

)
(A.29)

Here, M is the linear map from the moments to the density matrix in the number
state basis as defined in Eq. (3.29). The scheme described in the following allows to
measure all the necessary moments in Eq. (A.29).

We consider the case that in each trial of an experiment both q, characterizing
the qubit state, and the complex amplitude Ŝ , characterizing the photon field, are
measured. For each state preparation both numbers are stored in a 3D histogram
Di(S , q) where the index i labels the chosen qubit rotation before measurement. To
evaluate the desired expectation values we first determine the Pauli expectation values
〈σi〉S conditioned on the complex amplitude result S . This is done by fitting each
trace of Di(S , q) along the q axes to the calibration histograms pg(q) and pe(q). Based
on the knowledge of 〈σi〉S we determine the photon field distributions conditioned on
a specific qubit measurement result as

Dgi
(S ) = Ng

1 + 〈σi〉S

2

∑
q

Di(S , q)

Dei
(S ) = Ne

1 − 〈σi〉S

2

∑
q

Di(S , q) (A.30)

where Ng and Ne are appropriate normalization constants which guarantee that∫
S Dgi

(S ) =
∫

S Dei
(S ) = 1. For example, Dgx(S ) is the photon field distribution

under the condition that the qubit is measured with result g in the x-basis.
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Given these histograms one can evaluate the conditioned moments 〈(Ŝ †)nŜ m〉|gi

and 〈(Ŝ †)nŜ m〉|ei using Eq. (3.18). If signal field and qubit are not correlated with the
noise ρσ,a ⊗ ρh we can use the techniques described in Section 3.3.3 to extract the
desired quantities 〈(a†)namσi〉.

A.4.3 POVM operators and maximum-likelihood state estimation

As for photon state tomography, it is desirable to find a set of POVM operators for
the described measurement scheme. This allows to construct an iterative maximum-
likelihood state estimation procedure and furthermore provides insight into the condi-
tioned histograms introduced in Eq. (A.30).

For a perfect single shot qubit readout with a binary measurement result g or
e, the POVMs are given by the projectors onto eigenstates of the Pauli operators,
Π̂gi = |gi〉〈gi| and Π̂ei = |ei〉〈ei|. They are complete in the sense that an arbitrary
qubit density matrix can be explicitly written as a linear combination of projectors
ρσ = 1

2 (1 +
∑

i〈σi〉(Π̂gi − Π̂ei)).

Including the photon field measurement (compare Eq. (3.39)) the total set of POVMs
is

Π̂α,si
= Π̂

[ρh]
α ⊗ Π̂si (A.31)

with s ∈ {g, e} and i ∈ {x, y, z} for which the expectation values with respect to the
total density matrix are related to the measured histograms by

Tr[ρσ,aΠ̂α,gi
] �

1 + 〈σi〉

2
Dgi

(α)

Tr[ρσ,aΠ̂α,ei
] �

1 − 〈σi〉

2
Dei

(α) (A.32)

with 〈σi〉 being the unconditioned Pauli expectation values. Note that this remains
valid for qubit readout with limited single shot fidelity since the storage of the data
in 3-dimensional histograms allows for capturing all qubit-photon correlations. By
fitting the 3D histogram data along the q-axes to the expected ground and excited state
distributions (see Eq. (A.28)) we account for the finite read-out efficiency. Using the
set of POVMs given in Eq. (A.31) we are able to use the iterative maximum likelihood
procedure described above to estimate the most likely density matrix for the combined
system.
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A.5 Parametric amplifier calibration and pump tone
cancelation

For driving the nonlinear resonator into the parametric regime, a strong pump field
is required. This pump field can have two unwanted effects. First, the strong pump
tone can partially leak back towards the weak signal source of radiation (a circuit
QED system in our case) and cause its constant drive. This is due to finite isolation of
the circulators separating the paramp from the signal source (Figure A.1). Second, it
can saturate components of the following detection chain, which disturbs the linear
character of the measurement scheme. For these reasons, we use the setup shown
in Figure A.1 to cancel out most of the reflected pump field before it enters the first
circulator.

The pump tone is split up at room temperature into two parts. One part is guided
towards the parametric amplifier, while the other part is attenuated and phase-shifted
before it couples to the output. In the following, we call this latter part the cancelation
tone. Both the phase shifter and the variable attenuator are mechanical components,
which are actuated using stepper motors. Using these components we reach a relative
step size of ∆A ≈ 5 mdB in the attenuation and ∆φ ≈ 0.1◦ in the phase. The coupling
of the pump field to the input and output modes of the parametric amplifier is achieved
using a 20 dB directional coupler. The purpose of this arrangement is to adjust the
attenuation A and the phase φ, such that the cancelation tone destructively interferes
with the pump tone which is reflected from the parametric amplifier. The goal is
thus to minimize the total pump power Pout propagating towards the circulator, see
Figure A.1. While minimizing Pout we have to keep the power Pp at a fixed value,
which is the pump incident on the parametric amplifier resonator. Remember that
for fixed pump frequency and magnetic flux bias, the gain uniquely depends on this
power G = G(Pp). If we aim for a specific target gain Gtarget, we have to adjust Pp

appropriately.
For an ideal directional coupler the transmission from port 2 into port 3 would be

zero (Figure A.1) and thus the power Pp would be completely independent of the
cancelation tone (i.e. independent of A and φ). However, in reality the directional
coupler has a finite directivity, which means that a small fraction of the cancelation
tone leaks back towards the parametric amplifier sample. Therefore, by changing A
and φ we also change Pp and with that the parametric gain G. Note that even small
changes in Pp (a few tens of mdB) can significantly change the gain. As a result, we
cannot calibrate the pump cancelation independently of the gain but need a calibration
algorithm which maximizes a combined objective function f (G, Pout) by adaptively
changing all three control parameters Pin, A and φ. In the implemented algorithm,
we have chosen an objective function f (G, Pout) = log(|G −Gtarget|) − u log(Pout/Ps),
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Figure A.1: Schematic of the parametric amplifier setup. The coherent pump power Pin is
split into two parts at room temperature. One part is guided towards the parametric amplifier
sample via the directional coupler port 1. The second part is modified with variable attenuation
A and phase shift φ to cancel the reflected pump field at the output of port 4. Due to finite
directional coupler leakage from port 2 to port 3 a change of A and φ also affects the power Pp

which reaches the parametric amplifier sample.

where Ps is the power of the amplified test signal used for measuring the gain. The
adjustable parameter u allows us to weigh the significance of the gain G compared
to the cancelation Pout in the objective function. The choice of the function f is not
unique. Note that a good choice of u is essential for the success of the optimization
procedure. Sometimes it is required to manually change u during the optimization
procedure to achieve an acceptable result. In order to find good initial conditions for
the optimization procedure, it can help to make an initial coarse-grained sweep over
all three control parameters while measuring both G and Pout [Heinzle12].

The basic idea of the optimization algorithm is the following [Govenius12]:

1. Measure both G and Pout/Ps and evaluate the objective function f .

2. Change one of the control parameters and evaluate f again. Repeat this step
until f does no longer increase.

3. Repeat step (2) for the next control parameter.

4. Repeat steps (1) to (3) until f is above a desired threshold

This sequence provides only a simplified picture of the procedure. In practice, the
algorithm has to deal with hysteresis effects when stepping the variable attenuator and
phase shifter, and has to be robust against noise in in the measurements of G and Pout.
This requires additional features in the control software. The control software also
needs input from the user, such as the frequency at which the gain is measured and the
step sizes in all three control parameters.

The implemented calibration procedure could be further improved by automating a
measurement of the noise, by avoiding hysteresis effects and by optimizing the update
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of control parameters. Hysteresis could for example be reduced by approaching the
final settings of the attenuator and phase shifter always from the same direction. The
implementation of this idea is relatively straightforward. Furthermore, one could
replace the mechanical phase shifters and attenuators by electrically controlled ones.
This could reduce the total cost, reduce hysteresis effects and make the calibration
procedure much faster.

A.6 System noise and dynamic range

In order to determine the effective system noise relative to the output of the cavity,
we need a reference signal which is emitted from the cavity with known power.
We calibrate such a reference signal using an AC Stark shift measurement. Due to
the dispersive interaction between qubit and cavity, the qubit frequency is shifted
proportionally to χ and the average photon number n in the resonator [Schuster05].
We measure the qubit frequency shift for various drive powers applied to the weakly
coupled input port of the cavity (orange port in Figure 5.1(a)), which allows us to
translate the externally applied power into the corresponding average photon number
n , see Figure A.2(a). For a steady state photon number of n in the resonator, the
coherent output power is P = ~ωresnout with photon flux nout = nκ leaving the cavity.

Based on this calibration, we populate the cavity with a known average photon
number and measure the power spectral density S ∆ after all amplification and down-
conversion stages. We perform this measurement for both cases: the parametric
amplifier turned on and turned off (Figure A.2(b)). The frequency axis labels the
detuning from the pump frequency. When the pump tone is turned off, we observe
an almost frequency independent noise offset and an additional coherent peak at
12.5 MHz, which is the detuning of the cavity drive frequency from the pump frequency.
The power spectral density S ∆ is scaled such that the height of the coherent peak
relative to the noise offset is equal to noutδ f , where δ f = 100 MHz/2048 ≈ 49 kHz is
the bin size of our specific power spectral density measurement. For this scaling, we
can interpret the power spectral density as the ’number of photons emitted from the
cavity per Hz and per sec’. Note that all the attenuation and the noise added at later
stages is referred back to the output of the cavity. We extract an effective system noise
offset of about N0 + 1 ≈ 180 close to the cavity frequency.

We repeat the measurement of the power spectral density with the parametric
amplifier turned on and again scale the data such that the coherent peak at 12.5 MHz
detuning is equal to noutδ f . Due to the additional parametric amplification, the signal
to noise ratio is significantly increased. The noise offset close to the cavity frequency
is extracted to be N0 + 1 ≈ 4. The deviation from the quantum limit N0 = 0 is due to
attenuation in cables and microwave components as well as noise added by the HEMT
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Figure A.2: (a) Measured AC Stark shift of the qubit for varying cavity drive powers. Knowing
the dispersive interaction χ/2π = 2.05 MHz, we can translate the external drive power into
an average photon number inside the cavity. (b) Measured power spectral density S ∆ relative
to the pump frequency for the parametric amplifier pump turned on (blue) and for the pump
turned off (red). Both measured spectra are scaled such that the coherent peak at 12.5 MHz
corresponds to the number of photons emitted per Hz and per second from the cavity. (c)
Measured gain for various intra-cavity photon numbers. The decrease in gain for increasing
photon number is due to saturation of the parametric amplifier.

and parametric amplifier. We believe that the most significant improvement could be
achieved by optimizing the cabling between parametric amplifier and cavity. The two
additional coherent peaks in the power spectral density measurement originate from
the residual pump tone at zero detuning and the idler tone at −12.5 MHz, which is
generated during the parametric amplification process.

To estimate the total detection efficiency η in our state tomography experiments we
also determine the mode matching efficiency ηF , compare Section 3.2.2. Taking into
account the frequency dependence of the complex gain shown in Figure 5.2(c), the
implemented digital filter coefficients and the exponential cavity decay, we extract a
mode matching efficiency of ηF ≈ 50%. In combination with the measured system
noise, this results in an approximate total detection efficiency of η ≈ ηF/(N0 +

1) = 13%. This estimate for the detection efficiency does not take into account the
frequency dependence of the effectively added noise and cannot account for all analog
bandpass filter effects. Furthermore it is subject to inaccuracies in the AC Stark shift
calibration. In practice, we therefore determine the total detection efficiency from the
preparation and detection of a reference state with well-known properties. We prepare
the state 1√

2
(|0〉 + |1〉) inside the resonator and perform state tomography based on

quadrature histogram measurements. The total detection efficiency η, which appears
as a parameter in the state tomography procedure, is adjusted such that the measured
density matrix has maximal overlap with the one resulting from a master equation
simulation. This simulation is based on all independently measured device parameters,
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Figure A.3: (a) Design of a interdigitated finger capacitance with 8 + 8 fingers. Supercon-
ducting parts are shown in blue. Insulating parts are shown in white. The width of the fingers
and the gap between fingers is 3 µm. The length of the fingers is 100 µm. (b) Simulation
results of the capacitances in fF for various numbers of fingers. The simulation results are
(36, 79, 165, 207, 319) fF for (8, 16, 32, 40, 60) fingers.

such as qubit decay and dephasing. Based on this procedure, we extract a detection
efficiency of η = 15% for the photon-qubit entanglement measurements shown in
Chapter 5.

Based on the calibration of the intra-cavity photon number, we can also determine
the dynamic range of the parametric amplifier. We measure the parametric amplifier
gain for various intra-cavity photon numbers, from which we determine the 1dB
compression point at about 25 photons (Figure 5.2(c)). This corresponds to a power
of P = −127 dBm at the output of the cavity. When amplifying single or few photons
decaying from the cavity, the parametric amplifier is thus safely in the linear regime.

A.7 Simulation of capacitances for interdigitated finger
capacitors

For the fabrication of parametric amplifier devices with low external quality factors,
we have simulated the capacitance of digitated finger capacitors. An example of a
designed capacitor is shown in Figure A.3(a), which has 8 + 8 digitated fingers. Based
on this design we simulate the capacitance between island 1 and 2 (Figure A.3(a))
using the finite element software1. For the simulation we model the niobium parts as
perfect conductors with thickness 200 nm, which are on top of a 500 µm thick sapphire
substrate. The whole object is assumed to be in vacuum. For the simulation we take
into account a larger area of the ground plane than the one shown in Figure A.3(a).

The results of the measured capacitances between the inner conductor of the res-
onator (island 2) and the inner conductor of the launcher (island 1) are shown in

1Ansoft Maxwell
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Figure A.3(b) for various numbers of fingers. For the simulated designs we find
an almost linear relation between the capacitance and the number of fingers. When
designing capacitors with a different number of fingers we can therefore to good
approximation interpolate the expected capacitances. Within the accuracy of the fabri-
cation and the measurement of quality factors, we did not find a systematic deviation
between the simulated and the measured capacitances [Göppl08].
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