QSIT (FS 2016) - Students' presentations

Students will give presentations in groups up to 3 people on current experimental research in Quantum Information Processing. Each group has 30 min for the presentation plus 15 minutes for questions. A list of references for the presentation topics can be found below. Each presenter will be assessed by the other students, so that you can find out for yourselves how good your presentation skills are, and how you might improve them. The evaluation form is available here, information slides can be downloaded here. 

Please sign up for which preferred quantum-system implementation you would like to give a talk. Possible topics within this implementation can be found below.

Please remember the following rules for the sign-up and the talks:

1) Every presentation can only be done by a maximum of 3 people. 2 are preferred!
2) Only enter your name into the name field! Do not sign up as two people in the doodle (see below). Otherwise this might result in overbooking a subject.

3) There might be in-lecture presentations, which should be done in the second hour of the main lecture. All the other presentations are held during the exercise class.
4) For each subject an introductory lecture is given one week before the presentation.
5) Please contact your supervisor (indicated in "Topic") at least 2 weeks before your presentation date to set dates for a) discussing the paper and b) practise the talk. 
6) Write a short abstract on your talk (max. 0.5 pages) and send it to (tthiele@phys.ethz.ch) until wednesday before your presentation.

Sign-Up for final talk:  Doodle

Currently the following students are assigned for a talk: 







Single Qubit Operations (SK)




Density Matrix and State Tomography (SK)

Oscar Bettermann
Ngai Chun Tat



Grover Algorithm (TT)

Xiao Yang
Camilo Zapata



Shor Algorithm (TT)

Kim Dakyeong



Transmon Qubit (SK)

Katharina Schneider, Robin Oswald



Dissipation (SK)

Xu Muqing



Circuit QED Theory (TT)

Martin Buttenschön
Leandro Von Werra



Circuit QED Experiment (TT)

Zijin Lei
Pheng Zou



Error Correction 1 (SK)

Frances Hubis
Felix Bauer 



Error Correction 2 (SK)

Sandra Ferreiro
Tobias Geissler 



Adiabatic Quantum Computation (SK)

Ants Remm
Roland Matt 



D-Wave (SK)

Graham Norris 



Rydberg Atoms 1 (TT)

Lena Bartha
Fabian Brunner



Rydberg Atoms 2 (TT)

Max Melchner
Moritz Businger 



Photons 1 (TT)

Toni Heugel
Max Kessler 



Photons 2 (TT)

Claudio Gonelli
Giovanni Saccarola 



NMR 1 (SK)

Marlon Azinovic
John McCann 



NMR 2 (SK)

Fadri Grünenfelder
Patrik Casper 



NV-Centers 1 (TT)

Dominik Husmann
Michael Messer 



NV-Centers 2 (TT)




Ions 1 (SK)

Georg Wolgast 



Ions 2 (SK)

Tan Li Bing
Kenny Choo 


If there is any problem with the material for presentations, please do not hesitate to contact Tobias Thiele. You need to be signed in to the ETH network with vpn to download the papers.  

Material for Presentations

State tomography

J. B. Altepeter, D. F. V. James, and P. G. Kwiat

Quantum State Tomography

Superconducting Circuits - Quantum Computation

Introductory articles

Clarke, J. & Wilhelm, F.K.
Superconducting quantum bits
453, 1031 (2008)

Schoelkopf, R.J. & Girvin, S.M.
Wiring up quantum systems
451, 664 (2008)

Devoret, M.H. & Martinis, J.M.
Implementing Qubits with Superconducting Integrated Circuits
Quant. Inf. Proc, 3 163 (2004)

Transmon Qubit

Jens Koch, Terri M. Yu, Jay Gambetta, A. A. Houck, D. I. Schuster, J. Majer, Alexandre Blais, M. H. Devoret,
S. M. Girvin, and R. J. Schoelkopf
Charge-insensitive qubit design derived from the Cooper pair box
Phys. Rev. A. 76, 042319 (2007)


Jens Koch, Terri M. Yu, Jay Gambetta, A. A. Houck, D. I. Schuster, J. Majer, Alexandre Blais, M. H. Devoret,
S. M. Girvin, and R. J. Schoelkopf
Charge-insensitive qubit design derived from the Cooper pair box
Phys. Rev. A. 76, 042319 (2007)

Read out [1.]

D. Ristè, J. G. van Leeuwen, H.-S. Ku, K. W. Lehnert, and L. DiCarlo 
Initialization by Measurement of a Superconducting Quantum Bit Circuit  
Phys. Rev. Lett. 109, 050507 (2012)

Algorithms/Entanglement [2.]

L. DiCarlo, M. D. ReedL. SunB. R. JohnsonJ. M. ChowJ. M. GambettaL. FrunzioS. M. GirvinM. H. Devoret & R. J. Schoelkopf
Preparation and measurement of three-qubit entanglement in a superconducting circuit
Nature 467, 7315 (2010)

L. DiCarlo, J. M. Chow, J. M. Gambetta, Lev S. Bishop, B. R. Johnson, D. I. Schuster, J. Majer, A. Blais, L. Frunzio, S. M. Girvin & R. J. Schoelkopf
Demonstration of two-qubit algorithms with a superconducting quantum processor
Nature 460, 7252 (2009)

Error correction [3.]

R. Barends et al.
Superconducting quantum circuits at the surface code threshold for fault tolerance
Nature 508, 500-503 (2014)

J. M. Chow et al.
Implementing a strand of scalable fault-tolerant quantum computing fabric
Nature Communications 5, 4015 (2014)

J. Kelly et al.
State preservation by repetitive error detection in a superconducting quantum circuit
Nature 519, 66-69 (2015)

A. D. Corcoles et al.
Detecting arbitrary quantum errors via stabilizer measurements on a sublattice of the surface code

D. Riste et al.
Detecting bit-flip errors in a logical qubit using stabilizer measurements

Adiabatic quantum computation [4.]

E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda
A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem

J. Roland and N. J. Cerf 
Quantum search by local adiabatic evolution 
Phys. Rev. A 65, 042308 (2002)

D-Wave [5.]

M. W. Johnson, M. H. S. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson, R. Harris, A. J. Berkley, J. Johansson, P. Bunyk, E. M. Chapple, C. Enderud, J. P. Hilton, K. Karimi, E. Ladizinsky, N. Ladizinsky, T. Oh, I. Perminov, C. Rich, M. C. Thom, E. Tolkacheva, C. J. S. Truncik, S. Uchaikin, J. Wang, B. Wilson & G. Rose
Quantum annealing with manufactured spins
Nature 473194–198 (2011)

Sergio Boixo, Troels F. Rønnow, Sergei V. Isakov, Zhihui Wang, David Wecker, Daniel A. Lidar, John M. Martinis & Matthias Troyer
Evidence for quantum annealing with more than one hundred qubits
Nature Physics 10, 218–224 (2014)

Rydberg atoms in Cavities

Introductory articles/books

J. M. Raimond, M. Brune, and S. Haroche 
Manipulating quantum entanglement with atoms and photons in a cavity 
Rev. Mod. Phys. 73, 565

T. F. Gallagher
Rydberg atoms (book)

Rydberg atoms in Cavity: Quantum Feedback [6.]

B. Peaudecerf, C. Sayrin, X. Zhou, T. Rybarczyk, S. Gleyzes, I. Dotsenko, J. M. Raimond, M. Brune, and S. Haroche
Quantum feedback experiments stabilizing Fock states of light in a cavity 
Phys. Rev. A 87, 042320

C. Sayrin, I. Dotsenko, X. Zhou, B. Peaudecerf, T. Rybarczyk, S. Gleyzes, P. Rouchon, M. Mirrahimi, H. Amini, M. Brune, J-M. Raimond & S. Haroche
Real-time quantum feedback prepares and stabilizes photon number states
Nature, 477, 73 (2011)

X. Zhou, I. Dotsenko, B. Peaudecerf, T. Rybarczyk, C. Sayrin, S. Gleyzes, J. M. Raimond, M. Brune, and S. Haroche
Field Locked to a Fock State by Quantum Feedback with Single Photon Corrections  
Phys. Rev. Lett. 108 (2012)



Introductory articles

Leibfried, D., Blatt, R., Monroe, C. and Wineland D.
Quantum dynamics of single trapped ions
Review of Modern Physics 75, 281 (2003)

Blatt, R. and Wineland, D.
Entangled states of trapped atomic ions
Nature 453, 1008 (2008)

Trapped Ions: Multi-qubit gates [7.]

D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. M. Itano, B. Jelenkovic acute, C. Langer, T. Rosenband & D. J. Wineland
Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate
Nature 422, 412-415 (2003)

J. Benhelm, GKirchmair, CF. Roos & Blatt
Towards fault-tolerant quantum computing with trapped ions
Nature Physics 4, 463 (2008)

Trapped Ions: Quantum simulation [8.]

Richerme, P., Gong, Z., Lee, A., Senko, C., Smith, J., Foss-Feig, M., Michalakis, S., V. Gorshkov, A., and Monroe, C.
Non-local propagation of correlations in long-range interacting quantum systems
Nature 511, 198-201 (2014)

Lanyon, B. P., Hempel, C., Nigg, D., Müller, M. et al.
Universal Digital Quantum Simulation with Trapped Ions. 
Science 334, 57 (2011)

Trapped Ions/Atoms in Cavities: Quantum networks [9.]

H.J. Kimble
The quantum internet 
Nature 453, 1023-1030 (2008) 

D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L.-M. Duan, and C. Monroe 
Entanglement of single-atom quantum bits at a distance.

 449, 68 (2007)

S. Ritter, C. Nölleke, C. Hahn, A. Reiserer,A. Neuzner,M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann & G.Rempe
An elementary quantum network of single atoms in optical cavities
Nature 484, 195 (2012)


Introductory articles

NV-Centers: Decoherence and Noise [10.]

T. van der Sar, Z. H. Wang, M. S. Blok, H. Bernien, T. H. Taminiau, D. M. Toyli, D. A. Lidar, D. D. Awschalom, R. Hanson & V. V. Dobrovitski
Decoherence-protected quantum gates for a hybrid solid-state spin register
Nature 484, 82–86 (2012)

W. Pfaff et al.
Unconditional quantum teleportation between distant solid-state quantum bits
Science, 345 (2014) 

NV-Centers: Error Correction [11.]

G. Waldherr, Y. WangS. ZaiserM. JamaliT. Schulte-HerbrüggenH. AbeT. OhshimaJ. IsoyaJ. F. DuP. Neumann & J. Wrachtrup 
Quantum error correction in a solid-state hybrid spin register 
Nature (2014)

 T. H. Taminiau, J. Cramer, T. van der Sar, V. V. Dobrovitski & R. Hanson
Universal control and error correction in multi-qubit spin registers in diamond
Nature Nanotechnology (2014)



No Introductory articles

Photons: Experimental violation of Bell inequalities with photons [12.]

Aspect, A., Grangier, P., Roger, G. 
Experimental Realization of EPR-Bohm Gedankenexperiment: A New Violation of Bell's Inequalities.

Phys. Rev. Lett. 49, 91 (1982)

Weihs, G., Jennewein, T., Simon, C. et al. 
Violation of Bell inequality under strict Einstein locality conditions.
Phys. Rev. Lett. 81, 5039 (1998)

For comparison to atomic systems and superconducting qubits see also:

Matsukevich, D. N., Maunz, P., Moehring, D. L. et al.
Bell inequality violation with two remote atomic qubits.
Phys. Rev. Lett. 100, 150404 (2008)

Ansmann, M., Wang, H., Bialczak, R. C. et al.
Violation of Bell's inequality in Josephson phase qubits. 
Nature 461, 504 (2009)

Photons: Experimental demonstrations of teleportation with photons [13.]

Bouwmeester, D., Pan, J.-W., Mattle, K. et al. 
Experimental quantum teleportation.
Nature 390, 575 (1997)

Ma, X.-S., Herbst, T., Scheidl, T. et al.
Quantum teleportation over 143 kilometres using active feed-forward.
Nature 489, 269 (2012)

Yin, J.et al. 
Quantum teleportation and entanglement distribution over 100-kilometre free-space channels

For comparison to atomic systems and superconducting qubits see also:

Barrett, M. D., Chiaverini, J., Schaetz, T. et al. 
Deterministic quantum teleportation of atomic qubits.
Nature 429, 737 (2004)

L. Steffen, et al. 
Realization of Deterministic Quantum Teleportation with Solid State Qubits



Introductory articles

Gershenfeld, N. A. and Chuang, I. L.
Bulk Spin-Resonance Quantum Computation
Science 275, 350 (1997)

Vandersypen L. M. K. and Chuang, I. L. 
NMR techniques for quantum control and computation
Review of Modern Physics 76, 1037 (2004) 

NMR: Shor algorithms – Theoretical background [14.]

Shor Pieter W. 
Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer.
arXiv:quant-ph/9508027 (1995)

Nielsen, Michael A. and Chuang, Isaac L.
Quantum Computation and Quantum Information. 
Cambridge University Press (2000)

NMR: Shor algorithms – Experimental realization [15.]

Vandersypen, L. M. K. et al.
Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance.

Nature 414, 883 (2001)

For comparison to optical photons and superconductin qubits see also:

Erik Lucero et al. 
Computing prime factors with a Josephson phase qubit quantum processor.
Nature Physics 8, 719 (2012)

Alberto Politi, Jonathan C. F. Matthews, and Jeremy L. O'Brien
Shor’s Quantum Factoring Algorithm on a Photonic Chip. 
Science 325, 1221 (2009)