QSIT (FS 2014) - Students' presentations

Students will give presentations in pairs on current experimental research in Quantum Information Processing. Each group has 30 min for the presentation plus 15 minutes for questions. A list of references for the presentation topics can be found below. Each presenter will be assessed by the other students, so that you can find out for yourselves how good your presentation skills are, and how you might improve them. The evaluation form is available here, information slides can be downloaded here. 

Currently the following students are assigned for a talk: Frederik LohofTim MenkeJoannis Lukas Viktor KoepsellJean-Claude BesseOliver Wipfli, David Nadlinger, Lukas Pascal Gerster Marc Serra GarciaGustavo Filipe Ferreira VillaresValentin Luc Adrien GoblotChristian Daniel Vázquez Dietiker Natasja JovanovicMaud Charlotte BarthélemyAndrea RocchettoChristoph FischerYuanyuan DengHenry Edzard Clausen, Ralf Kohrt, Adrian RyserJunxin ChenChi Zhang, Kathrin Svenja Gerhard.


Please remember the following rules for the sign-up and the talks:

1) Every presentation can only be done by a maximum of 2 people. 
2) Only enter your name into the name field! Do not sign up as two people in the doodle. Otherwise this might result in overbooking a subject.
3) There are two in-lecture presentations, which should be done in the second hour of the main lecture. All the other presentations are held during the exercise class.
4) For each subject an introductory lecture is given by Andreas Wallraff one week before the presentation, except for the Rydberg atoms, which will be on the same day.

The doodle poll is closed. 





11-04-2014  1  Superconducting Circuits - Quantum Computing (in-lecture presentation) (CE)

Tim Menke,
Joannis Lukas Viktor Koepsell

11-04-2014 2 Rydberg Atoms in Cavities - Quantum Feedback (TT)

Jean-Claude Besse,
Oliver Wipfli

02-05-2014 3 Superconducting Circuits - Adiabatic Quantum Computing (CE) Lukas Pascal Gerster
02-05-2014 4 Superconducting Circuits - D-Wave (CE) Marc Serra Garcia,
Gustavo Filipe Ferreira Villares
09-05-2014 5 Ions - Quantum Simulation (TT)

Valentin Luc Adrien Goblot,
Antonio Rubio Abadal 

09-05-2014 6 Ions/Atoms - Quantum Networks (TT) Christian Daniel Vázquez Dietiker,David Nadlinger
16-05-2014 7 NV-Center - Decoherence and Noise (CE)

Natasja Jovanovic,
Maud Charlotte Barthélemy

16-05-2014 8 NV-Center - Error correction (CE) Andrea Rocchetto,
Christoph Fischer 
23-05-2014 9 Photons - Bell tests (CE) Yuanyuan Deng,
Henry Edzard Clausen
23-05-2014 10 Photons - Teleportation (CE) Ralf Kohrt, Adrian Ryser
30-05-2014 11 NMR - Shor algorithm (Theory) (TT) Junxin ChenChi Zhang
30-05-2014 12 NMR - Shor algorithm (Experiment) (TT) Kathrin Svenja Gerhard


If there is any problem with the material for presentations, please do not hesitate to contact Tobias Thiele. You need to be signed in to the ETH network with vpn to download the papers.  

Material for Presentations

Superconducting Circuits - Quantum Computation

Introductory articles

Clarke, J. & Wilhelm, F.K.
Superconducting quantum bits
453, 1031 (2008)

Schoelkopf, R.J. & Girvin, S.M.
Wiring up quantum systems
451, 664 (2008)

Devoret, M.H. & Martinis, J.M.
Implementing Qubits with Superconducting Integrated Circuits
Quant. Inf. Proc, 3 163 (2004)

1. Superconducting Qubits

D. Ristè, J. G. van Leeuwen, H.-S. Ku, K. W. Lehnert, and L. DiCarlo 
Initialization by Measurement of a Superconducting Quantum Bit Circuit  
Phys. Rev. Lett. 109, 050507 (2012)

L. DiCarlo, M. D. ReedL. SunB. R. JohnsonJ. M. ChowJ. M. GambettaL. FrunzioS. M. GirvinM. H. Devoret & R. J. Schoelkopf
Preparation and measurement of three-qubit entanglement in a superconducting circuit
Nature 467, 7315 (2010)

R. Barends et al.
Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing

L. DiCarlo, J. M. Chow, J. M. Gambetta, Lev S. Bishop, B. R. Johnson, D. I. Schuster, J. Majer, A. Blais, L. Frunzio, S. M. Girvin & R. J. Schoelkopf
Demonstration of two-qubit algorithms with a superconducting quantum processor
Nature 460, 7252 (2009)

Rydberg atoms in Cavities

Introductory articles/books

J. M. Raimond, M. Brune, and S. Haroche 
Manipulating quantum entanglement with atoms and photons in a cavity 
Rev. Mod. Phys. 73, 565

T. F. Gallagher
Rydberg atoms (book)

2. Rydberg atoms in Cavity: Quantum Feedback

B. Peaudecerf, C. Sayrin, X. Zhou, T. Rybarczyk, S. Gleyzes, I. Dotsenko, J. M. Raimond, M. Brune, and S. Haroche
Quantum feedback experiments stabilizing Fock states of light in a cavity 
Phys. Rev. A 87, 042320

C. Sayrin, I. Dotsenko, X. Zhou, B. Peaudecerf, T. Rybarczyk, S. Gleyzes, P. Rouchon, M. Mirrahimi, H. Amini, M. Brune, J-M. Raimond & S. Haroche
Real-time quantum feedback prepares and stabilizes photon number states
Nature, 477, 73 (2011)

X. Zhou, I. Dotsenko, B. Peaudecerf, T. Rybarczyk, C. Sayrin, S. Gleyzes, J. M. Raimond, M. Brune, and S. Haroche
Field Locked to a Fock State by Quantum Feedback with Single Photon Corrections  
Phys. Rev. Lett. 108 (2012)



No introductory articles

3. Adiabatic quantum computation

E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda
A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem

J. Roland and N. J. Cerf 
Quantum search by local adiabatic evolution 
Phys. Rev. A 65, 042308 (2002)

4. D-Wave

M. W. Johnson, M. H. S. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson, R. Harris, A. J. Berkley, J. Johansson, P. Bunyk, E. M. Chapple, C. Enderud, J. P. Hilton, K. Karimi, E. Ladizinsky, N. Ladizinsky, T. Oh, I. Perminov, C. Rich, M. C. Thom, E. Tolkacheva, C. J. S. Truncik, S. Uchaikin, J. Wang, B. Wilson & G. Rose
Quantum annealing with manufactured spins
Nature 473194–198 (2011)

Sergio Boixo, Troels F. Rønnow, Sergei V. Isakov, Zhihui Wang, David Wecker, Daniel A. Lidar, John M. Martinis & Matthias Troyer
Evidence for quantum annealing with more than one hundred qubits
Nature Physics 10, 218–224 (2014)


Introductory articles

Leibfried, D., Blatt, R., Monroe, C. and Wineland D.
Quantum dynamics of single trapped ions
Review of Modern Physics 75, 281 (2003)

Blatt, R. and Wineland, D.
Entangled states of trapped atomic ions
Nature 453, 1008 (2008)

X. Trapped Ions: Multi-qubit gates

D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. M. Itano, B. Jelenkovic acute, C. Langer, T. Rosenband & D. J. Wineland
Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate
Nature 422, 412-415 (2003)

J. Benhelm, GKirchmair, CF. Roos & Blatt
Towards fault-tolerant quantum computing with trapped ions
Nature Physics 4, 463 (2008)

5. Trapped Ions: Quantum simulation

Richerme, P., Gong, Z., Lee, A., Senko, C., Smith, J., Foss-Feig, M., Michalakis, S., V. Gorshkov, A., and Monroe, C.
Non-local propagation of correlations in long-range interacting quantum systems
ArXiv:1401.5088 (2014)

Lanyon, B. P., Hempel, C., Nigg, D., Müller, M. et al.
Universal Digital Quantum Simulation with Trapped Ions. 
Science 334, 57 (2011)

6. Trapped Ions/Atoms in Cavities: Quantum networks

D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L.-M. Duan, and C. Monroe 
Entanglement of single-atom quantum bits at a distance.

 449, 68 (2007)

S. Ritter, C. Nölleke, C. Hahn, A. Reiserer,A. Neuzner,M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann & G.Rempe
An elementary quantum network of single atoms in optical cavities
Nature 484, 195 (2012)


Introductory articles

7. NV-Centers: Decoherence and Noise

T. van der Sar, Z. H. Wang, M. S. Blok, H. Bernien, T. H. Taminiau, D. M. Toyli, D. A. Lidar, D. D. Awschalom, R. Hanson & V. V. Dobrovitski
Decoherence-protected quantum gates for a hybrid solid-state spin register
Nature 484, 82–86 (2012)

8. NV-Centers: Error Correction

G. Waldherr, Y. WangS. ZaiserM. JamaliT. Schulte-HerbrüggenH. AbeT. OhshimaJ. IsoyaJ. F. DuP. Neumann & J. Wrachtrup 
Quantum error correction in a solid-state hybrid spin register 
Nature (2014)

 T. H. Taminiau, J. Cramer, T. van der Sar, V. V. Dobrovitski & R. Hanson
Universal control and error correction in multi-qubit spin registers in diamond
Nature Nanotechnology (2014)



No Introductory articles

9. Photons: Experimental violation of Bell inequalities with photons

Aspect, A., Grangier, P., Roger, G. 
Experimental Realization of EPR-Bohm Gedankenexperiment: A New Violation of Bell's Inequalities.

Phys. Rev. Lett. 49, 91 (1982)

Weihs, G., Jennewein, T., Simon, C. et al. 
Violation of Bell inequality under strict Einstein locality conditions.
Phys. Rev. Lett. 81, 5039 (1998)

For comparison to atomic systems and superconducting qubits see also:

Matsukevich, D. N., Maunz, P., Moehring, D. L. et al.
Bell inequality violation with two remote atomic qubits.
Phys. Rev. Lett. 100, 150404 (2008)

Ansmann, M., Wang, H., Bialczak, R. C. et al.
Violation of Bell's inequality in Josephson phase qubits. 
Nature 461, 504 (2009)

10. Photons: Experimental demonstrations of teleportation with photons

Bouwmeester, D., Pan, J.-W., Mattle, K. et al. 
Experimental quantum teleportation.
Nature 390, 575 (1997)

Ma, X.-S., Herbst, T., Scheidl, T. et al.
Quantum teleportation over 143 kilometres using active feed-forward.
Nature 489, 269 (2012)

Yin, J.et al. 
Quantum teleportation and entanglement distribution over 100-kilometre free-space channels

For comparison to atomic systems and superconducting qubits see also:

Barrett, M. D., Chiaverini, J., Schaetz, T. et al. 
Deterministic quantum teleportation of atomic qubits.
Nature 429, 737 (2004)

L. Steffen, et al. 
Realization of Deterministic Quantum Teleportation with Solid State Qubits



Introductory articles

Gershenfeld, N. A. and Chuang, I. L.
Bulk Spin-Resonance Quantum Computation
Science 275, 350 (1997)

Vandersypen L. M. K. and Chuang, I. L. 
NMR techniques for quantum control and computation
Review of Modern Physics 76, 1037 (2004) 

11. NMR: Shor algorithms – Theoretical background

Shor Pieter W. 
Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer.
arXiv:quant-ph/9508027 (1995)

Nielsen, Michael A. and Chuang, Isaac L.
Quantum Computation and Quantum Information. 
Cambridge University Press (2000)

12. NMR: Shor algorithms – Experimental realization

Vandersypen, L. M. K. et al.
Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance.

Nature 414, 883 (2001)

For comparison to optical photons and superconductin qubits see also:

Erik Lucero et al. 
Computing prime factors with a Josephson phase qubit quantum processor.
Nature Physics 8, 719 (2012)

Alberto Politi, Jonathan C. F. Matthews, and Jeremy L. O'Brien
Shor’s Quantum Factoring Algorithm on a Photonic Chip. 

Science 325, 1221 (2009)